Products catalogue

domestic and industrial automation

About the company

The F\&F company was established in 1992 on the basis of a trade and service company operating in the electronics industry.

Previous marketing and technical experience in the field of electronics and electrical engineering allowed us to create a production company offering a wide range of electronic control devices.

Initially, the offer of our company consisted mainly of twilight switches, automatic staircase lighting time switches, and phase failure sensors.

The company's strategy is based on the continuous expansion of the offer and seizing attractive market niches.

Currently, the F\&F offer includes a wide range of devices for home and industrial automation.
The company's research and development department's cooperation with the scientific community and end customers leads to the dynamic development of the offer and allows us to create devices with an increasing degree of technological advancements, such as the PLC MAX series of programmable logic controllers and the F\&Home smart home system.

Currently, the F\&F is a well-known brand in Poland, and the products manufactured under it are also sold in Russia, Ukraine, Belarus, Lithuania, Latvia, Czech Republic, Slovakia, Hungary, Romania, Serbia, Germany, Greece, Ireland, Portugal, Spain, Sweden, Norway, Australia, and the United States.

Contact:
Konstantynowska 79/81 tel./fax +48 (42) 2152383
95-200 Pabianice, POLAND
Office: biuro@fif.com.pl Sales department: handlowy@fif.com.pl

New products 2023

BO-100A-75mV Current shunt 100 A 312
BO-200A-75mV Current shunt 200 A 312
DR-09B Ceiling-mounted motion detector with presence detector function, black 43
DR-09-IP65 Hermetic, ceiling-mounted motion detector with presence detector function, white 43
DR-30M Motion detector, for high rooms 44
CP-721-FPV 1-phase voltage relay, for photovoltaic installations 166
FOX Single Switch Single relay, Wi-R1S1P-P 61
LE-01DC 1-phase DC meter 251
PCZ-528.3 1-channel universal programmable timer 137
PF-421 TRMS Automatic phase switch with adjustable lower and upper voltage threshold 169
PF-432 TRMS Automatic phase switch for use with a contactor, with phase priority, with fixed lower (207 V) and upper (253 V) tripping threshold 170
PF-433 TRMS Automatic phase switch for use with a contactor, without phase priority, with fixed lower (207 V) and upper (253 V) tripping threshold 170
PF-434 TRMS Automatic phase switch for use with a contactor, with phase priority, with adjustable lower ($160 \mathrm{~V} \div 220 \mathrm{~V}$) and upper ($240 \mathrm{~V} \div 280 \mathrm{~V}$) tripping thresholds 170
PF-435 TRMS Automatic phase switch for use with a contactor, without phase priority, with adjustable lower ($160 \mathrm{~V} \div 220 \mathrm{~V}$) and upper ($240 \mathrm{~V} \div 280 \mathrm{~V}$) tripping thresholds 170
PIN-12-24 Pulse power supply 24 V, power 200 W 201
PIN-60-24 Pulse power supply 24 V , power 60 W 201
PIN-100-48 Pulse power supply 48 V , power 100 W 201
PIN-300-48 Pulse power supply 48 V , power 300 W 201
PK-2Z-LED Electromagnetic relay 2×16 A 306
PSA-263 4-track network-aggregate switch 63 A 178
PSA-463 2-track network-aggregate switch 63 A 179
SSR-5A-D Modular solid-state relay 5 A 307
WB-2 3-position switch 286

Table of contents

Section I Building automation devices
Chapter 1
Twilight switches. 8
Chapter 2
Automatic staircase lighting time switches 13
Chapter 3
LED stair lights 20
Chapter 4
Glass panels 22
Chapter 5
Bistable relays 30
Chapter 6
Lighting dimmers 37
Chapter 7
Motion sensors 41
Chapter 8
Lighting controllers 48
Section II Building automation systems
Chapter 9
Roller shutter controllers 54
Chapter 10
Fox - Wi-Fi control system 60
Chapter 11
F\&Home - smart home wired system 65
Chapter 12
F\&Home RADIO - smart home radio system 68
Chapter 13
Smart Home for developers 73
Section III Remote control
Chapter 14
F\&Wave - radio control system 76
Chapter 15
RS - radio control system 88
Chapter 16
Proxi - bluetooth smart remote control system 90
Chapter 17
Remote control GSM 93
Section IV Video intercoms, door stations, mailboxes
Chapter 18
Video intercom monitors 102
Chapter 19
Door stations and accessories 107
Chapter 20Mailboxes113
Section V Time controllers
Chapter 21
Time relays 118
Chapter 22
Time controllers 129
Chapter 23
Control timers (programmable). 132
Section VI Programmable controllers
Chapter 24
Programmable controllers FLC 140
Chapter 25
MAX system 149
Section VII Power supply control
Chapter 26
Phase loss sensors 154
Chapter 27
Phase sequence and phase loss sensors 161
Chapter 28
Voltage relays. 165
Chapter 29
Automatic phase switches 168
Chapter 30
Automatic transfer switches 173
Chapter 31
Network-aggregate switches 178
Section VIII Current protection
Chapter 32
Power consumption limiters 182
Chapter 33Priority relays186
Chapter 34Current relays189
Chapter 35
Microprocessor motor relays 192
Chapter 36
Fuse modules 193
Section IX Power supply
Chapter 37
Power supplies and transformers 196
Chapter 38
Power indicators and multimeters 203
Chapter 39
Photovoltaic inverters 213
Chapter 40
Inverters and soft starters. 214
Section X Electricity consumption meters
Chapter 41
Electricity consumption meters 234
Section XI Status monitoring, measurement and regulation
Chapter 42
Pulse and operating time meters 260
Chapter 43
Liquid level control relays 265
Chapter 44
Temperature controllers 271
Section XII Measuring transducers and signal converters
Chapter 45
Auxiliary elements of automation systems 280
Chapter 46
Measuring transducers 287
Chapter 47
Contactors and relays 305
Chapter 48
Measuring current transformers. 308
Section XIII Indexes
Chapter 49
Product index 314
Chapter 50
Housing types and dimensions 317

Legend

Momentary buttons

Setters

voltage source

Other sensors

flood sensor

A. Communication output
M-Bus
(V) voltmeter
mA ammeter

Signal outputs

Receivers

Chapter 1
Twilight switches 8
Chapter 2
Automatic staircase lighting time switches 13
Chapter 3
LED stair lights 20
Chapter 4
Glass panels 22
Chapter 5Bistable relays30
Chapter 6
Lighting dimmers 37
Chapter 7
Motion sensors 41
Chapter 8
Lighting controllers 48

Twilight switches

Purpose
Twilight switches are used to automatically switch on the lighting of streets, squares, exhibitions, advertisements, etc. at dusk and to switch it off at dawn.

Functioning

The switch is placed in a place with constant access to natural daylight, and under the influence of changes in the lighting intensity at dusk and dawn, it switches the lighting on and off. The lighting switching time can be adjusted by the user with a potentiometer. Turning the potentiometer towards the "moon" - will switch the lighting later, while turning it towards the "sun" - will switch the lighting earlier. The twilight switch has a system that delays switching on and off of the lighting, thus reducing the impact of various disturbances (such as atmospheric discharges) on the operation of the machine.
Make sure that the switched-on light source does not illuminate the sensor of the twilight switch.
Do not route the probe connection cable close to a parallel, live or high-current cable.
The twilight switches can be specifically manufactured for voltages other than those specified in the technical data table, for example, $12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}, 110 \mathrm{VAC} / \mathrm{DC}$ and others.
The contact current provided in the technical data is a maximum value and may be subject to restrictions.
If the information provided shows that the relay on the device is insufficient, it is advisable to use an external switching element (such as a contactor) suitable for switching large surge currents.

AZH-MINI-LED

Miniature, hermetic, for LED lighting

Hermetic.
power supply
maximum load current $(\mathrm{AC}-1)$
twilight activation (adjustable)
hysteresis
activation delay
deactivation delay
resistance to current surges
power consumption
terminal
working temperature
dimensions
mounting
ingress protection

AZH/AZH 24v/AZH 12V

Hermetic.

(1) blue

power supply

AZH	$195 \div 253 \mathrm{VAC}$
AZH 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
AZH 12 V	$11 \div 14 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	10 A
twilight activation (adjustable)	$2 \div 1000 \mathrm{~lx}$
hysteresis	approx. 15 lx
activation delay	approx. 10 s
deactivation delay	approx. 20 s
power consumption	0.56 W
terminal	OMY $3 \times 0.75 \mathrm{~mm}^{2}, \mathrm{l}=0.8 \mathrm{~m}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP65

AZH-106/AZH-106 24V/AZH-106 12V
 Hermetic.

power supply	
AZH-106	$195 \div 253 \mathrm{VAC}$
AZH-106 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
AZH-106 12 V	$11 \div 14 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
twilight activation (adjustable)	$2 \div 1000 \mathrm{~lx}$
hysteresis	approx. 15 lx
activation delay	approx. 10 s
deactivation delay	approx. 20 s
power consumption	0.56 W
terminal	OMY $3 \times 1 \mathrm{~mm}^{2}, \mathrm{I}=0.8 \mathrm{~m}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	$\mathrm{IP65}$

AZH-C /AZH-C 24v

Miniature, hermetic.

AWZ/AWZ 24V

Hermetic. With internal connection.

AWZ-30

Hermetic. With internal connection.

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	30 A
twilight activation (adjustable)	$2 \div 1000 \mathrm{~lx}$
hysteresis	approx. 15 lx
activation delay	approx. 10 s
deactivation delay	approx. 20 s
power consumption	0.8 W
terminal	$6.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$76 \times 85 \times 35 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP65

With external hermetic probe

AZH-S/AZH-S 24V/AZH-S 12V/AZH-S PLUS/AZH-S PLUS 24V/AZH-S PLUS 12V

External, hermetic probe $\varnothing 10$ (AZH-S, AZH-S 24 V, AZH-S 12 V) or PLUS (AZH-S PLUS, AZH-S PLUS 24 V, AZH-S PLUS 12 V) included in the set (p .11).

power supply	
AZH-S	$195 \div 253 \mathrm{VAC}$
AZH-S $24 \mathrm{~V} /$ AZH-S PLUS 24 V	21 $27 . \mathrm{VAC} / \mathrm{DC}$
AZH-S $12 \mathrm{~V} /$ AZH-S PLUS 12 V	$11 \div 14 \mathrm{VAC} / \mathrm{DC}$
AZH-S PLUS	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	16A
twilight activation (adjustable)	2 $\div 1000 \mathrm{~lx}$
hysteresis	approx. 151 x
activation delay	approx. 10 s
deactivation delay	approx. 20 s
power consumption	0.56 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP20

AZ-B/AZ-B 24V/AZ-B uni/AZ-B pLus/AZ-B PLus uni

External, hermetic probe $\varnothing 10$ (AZ-B, AZ-B $24 \mathrm{~V}, \mathrm{AZ}-\mathrm{B}$ UNI) or PLUS (AZ-B PLUS, AZ-B PLUS UNI) included in the set (p. 11).

power supply	
AZ-B/AZ-B PLUS	$195 \div 253 \mathrm{VAC}$
AZ-B 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
AZ-B UNI/AZ-B PLUS UNI	$12 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
twilight activation (adjustable)	$2 \div 1000 \mathrm{~lx}$
hysteresis	approx. 15 lx
activation delay	approx. 10 s
deactivation delay	approx. 20 s
power consumption	0.56 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules $(35 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$I P 20$

AZ-112 / AZ-112 24v/AZ-112 PLUS/AZ-112 PLUS 24v/AZ-112-LED

External, hermetic probe $\varnothing 10$ or PLUS included in the set (p. 11).

power supply
AZ-112/AZ-112 PLUS
$195 \div 253 \mathrm{VAC}$ $21 \div 27 \mathrm{VAC} / \mathrm{DC}$
AZ-112 24 V/AZ-112 PLUS 24 V maximum load current (AC-1)
activation delay
approx. 10 s
deactivation delay
approx. 20 s
power consumption
0.56 W
terminal
$2.5 \mathrm{~mm}^{2}$ screw terminals

tightening torque	0.4 Nm
	$-25 \div 50^{\circ} \mathrm{C}$

working temperature $\quad 1$ module $(18 \mathrm{~mm})$
dimensions 1 module (18 mm)
mounting
for TH-35 rail
ingress protection
IP20

External, hermetic probes

PLUS probe

Purpose

Used in sets with: AZH-S PLUS, AZ-B PLUS, AZ-B PLUS UNI, AZ-112 PLUS. Also available separately.

The photosensitive sensor in a special, small plastic box. Connected with round cable, max. $\varnothing 7$ (such as $2 \times 0.5 \mathrm{~mm}^{2}$), through the PG7 cable gland.
Box with a special sealing flange, fixed to the base by means of two screws, closed with a cover with silicone gasket using 4 screws.

010 probe

Purpose

Used in sets with: AZH-S, AZ-B, AZ-B UNI, AZ-112. Also available separately.

A small, easy to install photosensitive sensor, with $2 \times 0.5 \mathrm{~mm}^{2} 1$-meter round cable that can be extended up to 10 m .

PCZ - Astronomical clocks
The astronomical clock, based on information about the current date and geographical coordinates of the place of its installation, automatically determines the daily, program points of switching the lighting on and off.
NFC wireless communication
The ability to wirelessly read and write the clock configuration via an Android phone equipped with the NFC communication module.

PCZ CONFIGURATOR app

Free app for Android phones and tablets equipped with NFC wireless communication module.

More information on p. 132
Android app

MB-LS-1 Light brightness level sensor with Modbus RTU output

More information on p. 300

Interesting and practical applications

Control system of a contactor that switches on receivers with total current consumption exceeding the permissible contact load of a twilight switch

Application of MST-01/MST-02 limiters to reduce the current surge at the moment of switching on the LED lighting

Automatic staircase lighting time switches

Purpose

Automatic staircase lighting time switches are designed to control the lighting of corridors and staircases.

Functioning

The automatic staircase lighting time switch switched on with the (bell) button, maintains the lighting for the preset time (from 30 s to 10 min .). After the set time has elapsed, the device will switch off the lighting automatically. When the lighting is switched off, it can be switched on again. The automatic staircase lighting time switches cannot work directly with fluorescent lamps, compact fluorescent lamps and other lamps with electronic starters.

Product	Supply voltage	Maximum current load (AC-1)	Configuration of the contacts	Separation of the contact	Anti-lock	Signalization of switching	Cooperation with backlit buttons	Mounting	Page
AS-B 24	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$	16 A	1×NO	-	-	-	-	for TH-35 rail	14
AS-B 42	$38 \div 46 \mathrm{~V} \mathrm{AC}$	16 A	$1 \times \mathrm{NO}$	-	-	-	-	for TH-35 rail	14
AS-B 110	100 $\div 120 \mathrm{~V} \mathrm{AC}$	16 A	$1 \times \mathrm{NO}$	-	-	-	-	for TH-35 rail	14
AS-B 220	195 2533 VAC	16 A	$1 \times \mathrm{NO}$	-	-	-	\bullet	for TH-35 rail	14
AS-212	195 $\div 253 \mathrm{VAC}$	16 A	$1 \times \mathrm{NO}$	-	-	-	-	for TH -35 rail	14
AS-214	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO}$	-	-	-	-	for TH-35 rail	14
AS-220T	195 2533 V AC	16 A	$1 \times \mathrm{NO}$	-	-	-	-	for TH-35 rail	15
AS-221T	195 2533 V AC	10 A	$1 \times \mathrm{NO}$	-	-	\bullet	-	for TH-35 rail	16
AS-222T	$195 \div 253 \mathrm{~V} \mathrm{AC}$	10 A	$1 \times \mathrm{NO}$	-	-	-	-	for TH-35 rail	16
AS-223	$165 \div 265$ V AC	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	-	-	for $\mathrm{TH}-35$ rail	15
AS-224	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO}$	-	-	-	-	for TH-35 rail	15
AS-225	$9 \div 30 \mathrm{VDC}$	4 A	OC (transistor)	-	-	-	-	in flush-mounted box	17
AS-225D	$9 \div 30 \mathrm{VDC}$	$\begin{array}{r} 12 \times 4 \mathrm{~A} \\ (\max 24 \mathrm{~A}) \end{array}$	$\begin{gathered} 12 \times O C \\ \text { (transistor) } \end{gathered}$	-	-	-	-	for TH-35 rail	18
ASO-24	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	10 A	$1 \times \mathrm{NO}$	-	-	-	-	surface-mounted	13
ASO-42	$38 \div 46 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	1.5 A	$1 \times \mathrm{NO}$	-	-	-	-	surface-mounted	13
ASO-110	$100 \div 120 \mathrm{~V} \mathrm{AC}$	10 A	$1 \times \mathrm{NO}$	-	-	-	-	surface-mounted	13
ASO-201	$195 \div 253 \mathrm{~V} \mathrm{AC}$	16 A	$1 \times \mathrm{NO}$	-	-	-	-	surface-mounted	14
ASO-202	195 253 V AC	16 A	$1 \times \mathrm{NO}$	-	\bullet	-	-	surface-mounted	15
ASO-203	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO}$	-	-	-	-	surface-mounted	15
ASO-204	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO}$	-	-	-	-	surface-mounted	14
ASO-205	195 253 V AC	10 A	$1 \times \mathrm{NO}$	-	-	-	-	in flush-mounted box	14
ASO-220	$195 \div 253 \mathrm{~V} \mathrm{AC}$	10 A	$1 \times \mathrm{NO}$	-	-	-	-	surface-mounted	13

ASO-220 / ASO-110 / ASO-42 / ASO-24

With cable connection.

power supply	
ASO-220	$195 \div 253 \mathrm{VAC}$
ASO-110	$100 \div 120 \mathrm{VAC}$
ASO-42	$38 \div 46 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
ASO-24	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	10 A
ASO-220/ASO-110	1.5 A
ASO-42	10 A
ASO-24	$<1 \mathrm{~s}$
activation delay	$0.5 \div 10 \mathrm{~min}$
deactivation delay (adjustable)	0.56 W
power consumption	
terminal	OMY $3 \times 0.75 \mathrm{~mm}^{2}, \mathrm{I}=0.45 \mathrm{~m}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	
ingress protection	surface-mounted

ASO-201 / ASO-204

With screw terminals.

power supply	$195 \div 253 \mathrm{VAC}$
ASO-201	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
ASO-204	
maximum load current (AC-1)	16 A
ASO-201/ASO-204	$<1 \mathrm{~s}$
activation delay	$0.5 \div 10 \mathrm{~min}$.
deactivation delay (adjustable)	0.56 W
power consumption	
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP20

(!) Only ASO-201 can work with backlit buttons.

ASO-205

For flush-mounted box.

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	10 A
activation delay	$<1 \mathrm{~s}$
deactivation delay (adjustable)	$0.5 \div 10 \mathrm{~min}$.
power consumption	0.4 W
terminal	$3 \times \mathrm{DY} 1 \mathrm{~mm}^{2}, \mathrm{I}=10 \mathrm{~cm}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 55, \mathrm{H}=13 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

(!) ASO-205 can work with backlit buttons.

AS-B 220 /AS-B 110/AS-B 42/AS-B 24

4-wire installation

power supply	
AS-B 220	$195 \div 253$ V AC
AS-B 110	100 120 VAC
AS-B 42	$38 \div 46 \mathrm{VAC}$
AS-B 24	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16A
activation delay	<1s
deactivation delay (adjustable)	$0.5 \div 10 \mathrm{~min}$.
power consumption	1.2 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

Only AS-B 220 can work with backlit buttons.

AS-212 / AS-214

power supply	
AS-212	$195 \div 253 \mathrm{VAC}$
AS-214	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
activation delay	$<1 \mathrm{~s}$
deactivation delay (adjustable)	$0.5 \div 10 \mathrm{~min}$.
power consumption	0.56 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for $\mathrm{TH}-35$ rail
ingress protection	IP20

With anti-blocking function

Functioning
The anti-blocking function of the automatic staircase lighting control prevents the lighting from being continuously switched on if the switch is blocked (e.g. by a match). In such a case, the automatic control unit will measure the preset time and switch off the lighting. The lighting can be switched on again after the blockage is removed.

ASO-202 / ASO-203

power supply	
ASO-202	$195 \div 253 \mathrm{VAC}$
ASO-203	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
activation delay	$<1 \mathrm{~s}$
deactivation delay (adjustable)	$0.5 \div 10 \mathrm{~min}$.
power consumption	0.56 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	$\mathrm{IP2O}$

Only ASO-202 can work with backlit buttons.
AS-223 / AS-224

power supply	
AS-223	$195 \div 253 \mathrm{VAC}$
AS-224	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
contact	$1 \times \mathrm{NO}$
maximum load current (AC-1)	16 A
activation delay	$0.1 \div 0.2 \mathrm{~s}$
deactivation delay (adjustable)	$0.5 \div 10 \mathrm{~min}$.
power consumption	0.56 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	
ingress protection	for $\mathrm{TH}-35 \mathrm{rail}$

[^0]
With light-off indication function

AS-220T

Functioning

When activated by momentary (bell) switch the automatic staircase switch maintains the lighting for the time set by the potentiometer (from 0.5 min . to 10 min .), after which the brightness of the lighting is reduced to the level set by the potentiometer (from 25% to 70%) for 30 seconds. Only after this time will the lighting be switched off completely (to avoid sudden darkness and to secure the time to reach the switch safely). During the reduced brightness the subsequent signal from the switch will switch the lighting back on to full brightness.

power supply	$195 \div 253 \mathrm{VAC}$
contact	$1 \times \mathrm{NO}$
maximum load current (AC-1)	12 A
activation delay	$<1 \mathrm{~s}$
deactivation delay (adjustable)	$30 \mathrm{~s} \div 10 \mathrm{~min}$.
lighting maintenance time	30 s
with reduced brightness	$25 \div 70 \%$
reduced brightness adjustment	ON/OFF
anti-blockade (selected by user)	approx. 1 W
power consumption	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
	0.5 Nm
tightening torque	$-25 \div 50^{\circ} \mathrm{C}$
working temperature	2 modules $(35 \mathrm{~mm})$
dimensions	for TH-35 rail
mounting	IP20
ingress protection	

AS-220T can work with backlit buttons.
Automatic lighting controller for: the LEDs, fluorescent lamps, compact fluorescent lamps or other lamps with electronic starters may not function properly. This may manifest itself when working with reduced brightness, for example: no dimming, blinking or complete switching off of the lamp.

Functioning

The automatic staircase lighting time switch switched on with the (bell) button maintains the lighting for the preset time (from 30 s to 10 min .). Then, after the preset time has elapsed, the brightness of the lighting is reduced by half for approximately 30 s. Only after this time will the lighting be switched off completely (to avoid sudden darkness and to secure the time to reach the switch safely). During the reduced brightness, the next signal from the switch will switch the lighting back on to full brightness.

3-wire installation

4-wire installation

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	10 A
activation delay	$<1 \mathrm{~s}$
deactivation delay (adjustable)	$0.5 \div 10 \mathrm{~min}$.
lighting maintenance time with reduced brightness	30 s
power consumption	0.8 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules $(35 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

AS-221T can work with backlit buttons.
Automatic lighting controller for: the LEDs, fluorescent lamps, compact fluorescent lamps or other lamps with electronic starters may not function properly. This may manifest itself when working with reduced brightness, for example: no dimming, blinking or complete switching off of the lamp.

AS-222T

Functioning

The automatic staircase switch switched on with the (bell) button, maintains the lighting for a preset time (from 30 s to 10 min .), after which the brightness of the lighting is reduced by half for approx. 30 s . Only after this time will the lighting be switched off completely (to avoid sudden darkness and to secure the time to reach the switch safely). During the reduced brightness, the next signal from the switch will switch the lighting back on to full brightness. The anti-lock function in the automatic staircase switch prevents the lighting from being constantly on in case the staircase switch is locked (for example with a match). If that happens, the automatic switch will switch off the lighting upon the elapse of the preset time. The lighting can be switched on again after the lock has been removed.

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	10 A
activation delay	$<1 \mathrm{~s}$
deactivation delay (adjustable)	$0.5 \div 10 \mathrm{~min}$.
lighting maintenance time	30 s
with reduced brightness	0.8 W
power consumption	
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules $(35 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

AS-222T cannot work with backlit buttons.
Automatic lighting controller for: the LEDs, fluorescent lamps, compact fluorescent lamps or other lamps with electronic starters may not function properly. This may manifest itself when working with reduced brightness, for example: no dimming, blinking or complete switching off of the lamp.

The automatic staircase switches can be specifically manufactured for voltages other than those specified in the technical data table ($12 \mathrm{~V}, 48 \mathrm{~V}$ and $110 \mathrm{VAC} / \mathrm{DC}$ and others). Exceptions are units AS-221T and AS-222T.

Cascading staircase machines

Purpose
Cascade automatic staircase lighting switches are designed to sequentially control $12 / 24 \mathrm{~V}$ DC stair lighting allowing to achieve the effect of light moving along the stairs together with a person going up or down. Lighting can be activated by push buttons or motion/distance sensors located at the bottom and top of the stairs. Thanks to the smooth setting of the switching time of individual light points and delay time until the next light point is switched on, the lighting can be fully adapted to the walking pace on the stairs.

Functioning
Pressing the DOWN button will switch on the lamp 1. After the preset delay time lamp 2 will switch on. When the switch-on time of the lamp 1 has elapsed, the lamp will start to gradually switch off. Transition from lamp 2 to lamp 3, from lamp 3 to lamp 4, etc., will take place in the same way. When going down the stairs and pressing the UP button, the sequence will be reversed - lamp number 5 will be switched on as the first one, then lamp number 4, etc.

AS-225 1-channel cascade controller

| power supply |
| :--- | ---: | ---: |
| output |
| type |$\quad 9 \div 30 \mathrm{VDC}$

Purpose

AS-225 is a controller designed to control a single light point in cascade lighting control systems. It is suitable for installation in a $\varnothing 60 \mathrm{~mm}$ installation box, directly under the controlled light source. The AS-225 connects in series, each two controllers are connected to each other by three wires, thus obtaining the ability to control the desired number of light points.

DRL-12 sensors are dedicated to AS -225 staircase automatic unit. More information on p. 46.

Functions

- Control of a multipoint lighting system;
- Ability to create a group from any number of controllers;
- Each of the controllers allows you to set your own switch-on time and the moment when the next segment will start to switch on;
- Switching on of the lighting using various setters: bell button, motion sensor, optical barrier, pressure sensor.
- The command is given potential-free by connecting the IN/OUT input to the "-" level of the power supply;
- Small housing for the installation box - can be mounted directly under the lamp;
- Easy installation (only 3 wires from the controller to controller).
power supply
$9 \div 30 \mathrm{VDC}$
channel quantity
type
$\begin{array}{lr} & \text { transistor OC (open collector) } \\ \text { maximum load current (1 channel) } & 4 \mathrm{~A}\end{array}$
maximum load total (12 channels) 24 A
maximum voltage 30 VDC

input type	potential-free
switch-on time (1 channel)	$3 \div 30$ s

activation delay on the next channel $0 \div$ switch-on time $0 \div$ switch-on time
power consumption
ther

Purpose

AS-225D is an integrated cascade stair lighting controller that allows direct control of up to twelve lighting points.
Thanks to the serial connection of AS-225D controllers, any expansion of the system and control of unlimited number of light points is possible.
(I) DRL-12 sensors are dedicated to AS -225D staircase automatic unit. More information on p. 46.

Functions

- Control of cascading multi-point lighting system;
- The number of controllable light points can be set (from 3 to 12);
- The ability to connect controllers in series to increase the number of controlled circuits;
- Additional control inputs:
- permanent light switching (such as for cleaning time);
- light switching lock (such as at a signal from the brightness sensor);
- "Night light" feature - the ability to set the brightness level when off, so that the stairs are never completely dark;
- Installation of the controller on a DIN rail;
- Switching on the lighting using various controllers: bell button, motion sensor, optical barrier, pressure sensor.

OMS-635 power limiter with automatic staircase switch, with anti-lock function

The OMS-635 switch is used to maintain the lighting of corridors, staircases or other facilities switched on for a specified period of time, after which the lighting will be switched off automatically and to automatically switch off the power supply of the installation in case of exceeding the set value of the power consumed by the receivers in its circuit.

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	16 A
switch-on time lighting (adjustable)	$0.5 \div 10 \mathrm{~min}$.
power limit	$200 \div 1000 \mathrm{VA}$
activation delay	$1.5 \div 2 \mathrm{~s}$
return supply hysteresis	2%
return supply time	30 s
power consumption	0.8 W
terminal	
	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
tightening torque	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
working temperature dimensions	0.5 Nm
mounting	$-25 \div 50^{\circ} \mathrm{C}$
ingress protection	2 modules (35 mm)
	for TH- 35 rail

More information on p. 185

LED stair lights

Purpose

LED staircase lights are elements of usable and decorative lighting in such places as: stairs, corridors, public buildings, etc. The use of LED staircase lights makes the use of lighting more convenient and cheaper.

Functioning

LED staircase lights have dimming feature - change of the power supply voltage causes the change of lighting brightness. This feature combined with dedicated automatic control systems such as AS-225 staircase sequential controller (p. 17) or selected F\&Wave radio control elements (p. 76) allows you to adjust the brightness and achieve a smooth brightening and dimming effect.

INGA

With dimming feature.

LINA

With dimming feature.

MAYA

With dimming feature.

power supply	12 VDC
power consumption	1.2 W
color temperature	
warm	3000 K
cold	6000 K
luminous flux	100 Im
number of activations	>40.000
lighting time to 100%	0.5 s
working temperature	$0 \div 40^{\circ} \mathrm{C}$
dimensions	
external	$85 \times 75 \times 20 \mathrm{~mm}$
groove	
mounting hole	$\varnothing 60 \mathrm{~mm}$, depth $>40 \mathrm{~mm}$
screw spacing	$\varnothing 60 \mathrm{~mm}$
mounting	
ingress protection	58 mm

With dimming feature.

Summary of product symbol designations

Product name	Inga						Lina						Maya						Vika					
Color of housing	satin		white		anthracite		satin		white		anthracite		satin		white		anthracite		satin		white		anthracite	
Color temp.	cold	warm																						
LS-ISC	-																							
LS-ISW		\bullet																						
LS-IWC			-																					
LS-IWW				-																				
LS-IAC					-																			
LS-IAW						\bullet																		
LS-LSC							-																	
LS-LSW								-																
LS-LWC									-															
LS-LWW										\bullet														
LS-LAC											-													
LS-LAW												\bullet												
LS-MSC													-											
LS-MSW														-										
LS-MWC															-									
LS-MWW																\bullet								
LS-MAC																	\bullet							
LS-MAW																		\bullet						
LS-VSC																			-					
LS-VSW																				-				
LS-VWC																					-			
LS-VWW																						-		
LS-VAC																							-	
LS-VAW																								\bullet

Legend (sample markings):
The LS-ISC index means: LS - staircase light, I - Inga (product name), S - satin (housing color), C - cold (color temperature);
The LS-VAW index means: LS - staircase light, I - Vika (product name), A - anthracite (housing color), W - warm (color temperature);
Cold color temperature (cold) => approx. 6000 K ;
Warm color temperature (warm) => approx. 3000 K.

Related devices

AS-225 with sequential switching function
The AS-225 automatic switch is a controller for building a multipoint staircase lighting control system.
More information on p. 17

AS-225D 12-channels cascade controller

AS-225D is an integrated cascade stair lighting controller that allows direct control of up to twelve lighting points.
More information on p. 18
DRL-12 laser distance sensor
DRL-12 with a laser distance sensor operating in the range up to 2 m , a dedicated 12 V lighting control, for example, stairs, corridors, etc.

Glass panels

Purpose

A product family of GP panels made of high quality polished glass can be a very elegant and functional part of any home.
The external white spot backlight gently brightens when you move your hand closer to it in order to indicate the location of the touch sensors. Button selection is indicated by switching on a spot backlight in orange. The backlight brightness can be adjusted to suit your individual needs. Panels can be combined with a wide range of actuator modules including: low-voltage automation controllers, 230 V bistable relays, roller shutter controllers, 230 V and LED lighting controllers, F\&Wave remote control transmitters, and integrated with F\&Home and F\&Home Radio smart systems.

Common characteristics

GP panels are available in white and black, in the following sizes:

- single ($81 \times 81 \times 12 \mathrm{~mm}$), integrated with one control module;
- double ($162 \times 81 \times 12 \mathrm{~mm}$), allowing the connection of any two control modules;
- triple ($243 \times 81 \times 12 \mathrm{~mm}$), allowing the connection of any three control modules.

Single panels, along with executive modules, are installed in standard $\varnothing 60 \mathrm{~mm}$ installation boxes.
Larger panels are installed accordingly: in double and triple installation boxes supplied with the panel.

Purpose

Push buttons designed for integration with any low-voltage automation controllers.
They are not intended for direct control of actuator circuits such as relays or LED lighting.
Buttons can operate both as bistable (two-position) and monostable (momentary).

Features

- 2 modes of operation: bistable and monostable;
- Single output load capacity up to 30 mA ;
- Output signal:
- voltage output;
- potential-free output (open collector).

Example of application

(!)
Panel configurations and variants of glass buttons are described on pages 26-28.

230 V circuit controllers

GS1-AC-R single universal relay with central control inputs

Purpose

The controller is designed for direct control of a single electrical circuit supplied with 230 V and with load up to 16 A .

Features

- 2 modes of operation: bistable relay and monostable relay
- Control of 230 V AC circuits;
- 16 A (AC-1) output load capacity;
- External control inputs allowing to change the state of the relay using an external button;
- Ability to group devices and implement central control functions using external ON and OFF control inputs;
- Thermal protection to prevent damage to the unit if a connected load is too high.

Example of application

power supply	$85 \div 265 \mathrm{~V} \mathrm{AC}$
working mode	monostable or bistable
executive element	relay
outputs	1
maximum load current (AC-1)	16 A
control inputs	3
control voltage	$\begin{array}{r} 230 \mathrm{~V} \\ \text { triggered } \mathrm{N} \text { level } \end{array}$
power consumption	
standby	<0.2 W
on	<0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ spring terminals
dimensions	$81 \times 81 \times 12 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	
front	IP50
back	IP20

Panel configurations and variants of glass buttons are described on pages 26-28.

GS2-AC-R double universal relay

Purpose
Controller designed for direct control of two electrical circuits with a total load of 20 A .

Features

- 2 operating modes, set independently for each button: bistable relay or monostable relay;
- Control of 230 V AC circuits;

Example of application

- Total load capacity of 20 A (single 16 A circuit);
- Thermal protection to prevent damage to the unit if a connected load is too high.

(!) Panel configurations and variants of glass buttons are described on pages 26-28.

GS4-AC-T quadruple controller for 230 V low-power circuits

Purpose

The controller designed for direct control of four low-power electric circuits supplied with 230 V AC.

Features

- 2 operating modes, set independently for each button: bistable relay and monostable relay;
- Control of 230 V AC circuits;
- Total load capacity of 20 A (single 16 A circuit)
- Thermal protection to prevent damage to the unit if a connected load is too high.

Example of application

power supply	$85 \div 265$ V AC
working mode	monostable or bistable
executive element	triac
outputs	4
maximum load current (AC-1)	16 A
single output	100 W
total load of two channels	250 W
power consumption	
standby	<0.2 W
on	$<0.5 \mathrm{~W}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ spring terminals
dimensions	$81 \times 81 \times 12 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	
front	IP50
back	IP20

GS2-STR-3 230 V roller shutter controller

Purpose

Controller designed to control 230 V AC roller shutter motor. It is equipped with central control inputs allowing the controller to be connected to group control systems, for example with other GS2-STR-3 or classic STR-3P or STR-3 controllers.

Features

- Ability to control the pitch of the slats;
- Programming the time of opening/closing the roller shutter;
- Central control external inputs;
- Motor load capacity up to 320 W (up to 8 A in AC-1 load class);
- Protection against simultaneous powering of both windings of the roller shutter motor;
- Thermal protection to prevent damage to the unit if a connected load is too high.

Example of application

power supply executive element outputs	$85 \div 265 \mathrm{~V} \mathrm{AC}$ relay
maximum load current	$2(1$ roller shutter $)$
AC motor (AC-3)	$1.5 \mathrm{~A}(320 \mathrm{~W})$
load capacity (AC-1)	8 A
power consumption	
standby	
on	$<0.2 \mathrm{~W}$
working temperature	$<0.6 \mathrm{~W}$
terminal	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$1.5 \mathrm{~mm}^{2}$ spring terminals
mounting	
ingress protection	$81 \times 81 \times 12 \mathrm{~mm}$
front	in flush-mounted box $\varnothing 60$
back	

(!) Panel configurations and variants of glass buttons are described on pages 26-28.

Interesting and practical applications

GS-4DC button configured to operate in bistable mode with voltage output used to control four LED lighting circuits via relays PP-2Z 24V.

GP3-421-W

Button layout

Each digit describes the number of buttons on a given panel:

Quadruple button, for actuator controllers

Double button, for actuator controllers

Single button, for actuator controllers

GS4-DC - low-voltage home automation controller GS4-AC-T - quadruple bistable relay for low power circuits

F\&Wave series:

FW-GS4-230 - F\&Wave quadruple transmitter, 230 V power supply
FW-GS4-24 - F\&Wave quadruple transmitter, 24 V power supply
F\&Home RADIO series:
rH-S4L4-230 - F\&Home RADIO quadruple transmitter, 230 V power supply
rH-S4L4-24 - F\&Home RADIO quadruple transmitter, 24 V power supply

GS2-DC - low-voltage home automation controller
GS2-AC-R - double bistable relay for low power circuits
GS2-STR-3 - roller shutter controller
F\&Wave series:
FW-GS2-230 - F\&Wave double transmitter, 230 V power supply
FW-GS2-24 - F\&Wave double transmitter, 24 V power supply

F\&Home RADIO series:

rH-S2L2-230 - F\&Home RADIO double transmitter, 230 V power supply rH-S2L2-24 - F\&Home RADIO double transmitter, 24 V power supply

GS1-DC - low-voltage home automation controller
GS1-AC-R - single bistable relay for low power circuits
F\&Wave series:
FW-GS1-230 - F\&Wave single transmitter, 230 V power supply
FW-GS1-24 - F\&Wave single transmitter, 24 V power supply

WARNING!

The layout of the buttons should be adapted to the actuators controllers that will be connected to the panel. The actuators controllers should be ordered together with the glass panel. Two (identical or different) actuator modules can be connected to the GP2 panel. Three (identical or different) actuator modules can be connected to the GP3 panel.

Types of buttons (cont.)

	Name	Button type	Panel	Description
$\underset{\substack{\infty \\ \sum_{\sim}^{\infty}}}{\infty}$	FW-GS2-230	double	-	F\&Wave module for integration with the glass panel GP2 $(162 \times 81 \mathrm{~mm})$ or GP3 $(243 \times 81 \mathrm{~mm}), 230$ V power supply. Requires ordering with GP2 or GP3 glass panel suitable for double (for FW-GS2) or quadruple (for FW-GS4) buttons. The GP2 and GP3 panel configurator is shown on page 23.
	FW-GS4-230	quadruple	-	F\&Wave module for integration with the glass panel GP2 $(162 \times 81 \mathrm{~mm})$ or GP3 $(243 \times 81 \mathrm{~mm}), 230 \mathrm{~V}$ power supply. Requires ordering with GP2 or GP3 glass panel suitable for double (for FW-GS2) or quadruple (for FW-GS4) buttons. The GP2 and GP3 panel configurator is shown on page 23.
	FW-GS2-24	double	-	F\&Wave module for integration with the glass panel GP2 ($162 \times 81 \mathrm{~mm}$) or GP3 ($243 \times 81 \mathrm{~mm}$), 24 V power supply. Requires ordering with GP2 or GP3 glass panel suitable for double (for FW-GS2) or quadruple (for FW-GS4) buttons. The GP2 and GP3 panel configurator is shown on page 23.
	FW-GS4-24	quadruple	-	F\&Wave module for integration with the glass panel GP2 ($162 \times 81 \mathrm{~mm}$) or GP3 ($243 \times 81 \mathrm{~mm}$), 24 V power supply. Requires ordering with GP2 or GP3 glass panel suitable for double (for FW-GS2) or quadruple (for FW-GS4) buttons. The GP2 and GP3 panel configurator is shown on page 23.
	rH-S1L1-230-W	single		F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply
	rH-S2L2-230-W	double	-	F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply
	rH-S4L4-230-W	quadruple	$\cdots \cdot$	F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply
	rH-S1L1-24-W	single		F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply
	rH-S2L2-24-W	double	\cdot	F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply
	rH-S4L4-24-W	quadruple	\cdot \cdot \cdot \cdot	F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply
	rH-S1L1-230-B	single	F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply	
	rH-S2L2-230-B	double		F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply
	rH-S4L4-230-B	quadruple		F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply
	rH-S1L1-24-B	single	F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply	
	rH-S2L2-24-B	double		F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply
	rH-S4L4-24-B	quadruple		F\&Home Radio transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply

Glass panels

Single button, white GS1-W

Double button, white GS2-W

Quadruple button, white GS4-W

Quadruple button, black
GS4-B

Glass touch buttons designed for the F\＆Wave system

Works with
system
F\＆Wa今今

FW－GS1－230－W／FW－GS1－230－B

Single button with 1－channel F\＆Wave transmitter， 230 V power supply，white or black

FW－GS1－24－W／FW－GS1－24－B

Single button with 1－channel F\＆Wave transmitter， 24 V power supply，white or black

FW－GS2－230－W／FW－GS2－230－B

Double button with 2－channels F\＆Wave transmitter， 230 V power supply，white or black

FW－GS2－24－W／FW－GS2－24－B

Double button with 2－channels F\＆Wave transmitter， 24 V power supply，white or black

FW－GS4－230－W／FW－GS4－230－B

Quadruple button with 4－channels F\＆Wave transmitter， 230 V power supply，white or black

Product		$\begin{aligned} & \text { J } \\ & \tilde{\sim} \\ & \mathbf{0} \\ & \mathbf{3} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { U } \\ & \text { ふin } \end{aligned}$			O \％ d 0 0 3
power supply	$9 \div 30 \mathrm{VDC}$			$85 \div 265 \mathrm{~V} \mathrm{AC/DC}$		
channels quantity	1	2	4	1	2	4
button function configuration	－	－	－	－	－	－
function						
on／up	－	\bullet	\bullet	－	－	\bullet
off／down	－	\bullet	\bullet	－	\bullet	－
switch／raise／lower／ brighten／dim	－	－	－	－	－	－
power consumption						
standby	＜0．2 W					
on	＜0．5 W					
working temperature	$-25 \div 50^{\circ} \mathrm{C}$					
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals（cord）					
tightening torque	0.4 Nm					
mounting	in flush－mounted box $\varnothing 60$					
dimensions	$81 \times 81 \times 12 \mathrm{~mm}$					
protection level						
front	IP50					
back	IP20					

FW－GS4－24－W／FW－GS4－24－B

Quadruple button with 4－channels F\＆Wave transmitter， 24 V power supply，white or black

More information on p． 82

Glass touch buttons designed for the F\＆Home RADIO system
 rH－S1L1－230－W／rH－S1L1－230－B

Works with system

Single button with F\＆Home Radio controller， 230 V power supply，white or black

rH－S1L1－24－W／rH－S1L1－24－B

Single button with F\＆Home Radio controller， 24 V power supply，white or black
rH－S2L2－230－W／rH－S2L2－230－B
Double button with F\＆Home Radio controller， 230 V power supply，white or black

rH－S2L2－24－W／rH－S2L2－24－B

Double button with F\＆Home Radio controller， 24 V power supply，white or black
rH－S4L4－230－W／rH－S4L4－230－B
Quadruple button with F\＆Home Radio controller， 230 V power supply，white or black

rH－S4L4－24－W／rH－S4L4－24－B

Quadruple button with F\＆Home Radio controller， 24 V power supply，white or black

Model	$\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\tilde{N}} \\ & \text { + } \end{aligned}$			$\begin{aligned} & \text { ơ } \\ & \text { N } \\ & \underset{\sim}{\sim} \\ & \text { N } \\ & \text { د } \end{aligned}$	
power supply	$9 \div 30 \mathrm{VDC}$			$85 \div 265 \mathrm{~V} \mathrm{AC/DC}$		
channels quantity	1	2	4	1	2	4
power consumption						
standby	＜0．2 W					
on	＜0．5 W					
radio frequency	868 MHz					
working temperature	$-25 \div 50^{\circ} \mathrm{C}$					
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals（cord）					
tightening torque	0.4 Nm					
mounting	in flush－mounted box $\varnothing 60$					
dimensions	$81 \times 81 \times 12 \mathrm{~mm}$					
protection level						
front	IP50					
back	IP20					

Bistable relays

Purpose

Electronic bistable pulse relays enable switching on and off the lighting or other devices from several different points by means of parallel-connected, momentary (bell) control switches.

$\begin{aligned} & \text { 흘 } \\ & \text { 울 } \end{aligned}$														\%
BIS-402	$165 \div 265$ V AC	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	in flush-mounted box	31
BIS-403	195-253 VAC	10 A	1×NO	-	-	1	on/off	-	-	-	-	-	in flush-mounted box	33
BIS-404	$165 \div 265 \mathrm{~V} \mathrm{AC}$	$2 \times 8 \mathrm{~A}$	2×NO	-	-	2	gang (light) switch	-	-	-	-	-	in flush-mounted box	35
BIS-408	$165 \div 265 \mathrm{~V} \mathrm{AC}$	16 A	1×NO	-	-	1	on/off	-	-	-	-	-	in flush-mounted box	31
BIS-408-LED	$165 \div 265 \mathrm{~V} \mathrm{AC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	in flush-mounted box	31
BIS-409	$165 \div 265$ V AC	$2 \times 8 \mathrm{~A}$	2×NO	-	-	2	sequential	-	-	-	-	-	in flush-mounted box	36
BIS-410 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	16 A	1×NO	-	-	1	on/off	-	-	-	-	-	in flush-mounted box	33
BIS-410 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	1×NO	-	-	1	on/off	-	-	-	-	-	in flush-mounted box	33
BIS-410-LED 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	in flush-mounted box	33
BIS-410-LED 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	in flush-mounted box	33
BIS-411 230 V	$165 \div 265$ V AC	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for $\mathrm{TH}-35$ rail	32
BIS-411 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	32
BIS-411-LED 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for $\mathrm{TH}-35$ rail	32
BIS-411-LED 24 V	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	32
BIS-411B 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for TH -35 rail	32
BIS-411B-LED 230 V	$165 \div 265$ V AC	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	32
BIS-411BM 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for $T H-35$ rail	32
BIS-411BM-LED 230 V	$165 \div 265$ V AC	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for $\mathrm{TH}-35$ rail	32
BIS-411M 230 V	$165 \div 265$ V AC	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for $T H-35$ rail	32
BIS-411M 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for $\mathrm{TH}-35$ rail	32
BIS-411M-LED 230 V	$165 \div 265$ V AC	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for $T H-35$ rail	32
BIS-411M-LED 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for $T H-35$ rail	32
BIS-411 1R1Z 230 V	$165 \div 265$ V AC	2×8 A	$1 \times \mathrm{NO}, 1 \times \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for $\mathrm{TH}-35$ rail	32
BIS-411 1R1Z 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$2 \times 8 \mathrm{~A}$	$1 \times \mathrm{NO}, 1 \times \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for TH -35 rail	32
BIS-411 22230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	2×8 A	2×NO	-	-	1	on/off	-	-	-	-	-	for $\mathrm{TH}-35$ rail	32
BIS-411 2224 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$2 \times 8 \mathrm{~A}$	2×NO	-	-	1	on/off	-	-	-	-	-	for $T H-35$ rail	32
BIS-412 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	group (hotel)	-	-	-	-	-	for $T H-35$ rail	34
BIS-412 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	group (hotel)	-	-	-	-	-	for TH-35 rail	34
BIS-412-LED 230 V	$165 \div 265$ V AC	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	group (hotel)	-	-	-	-	-	for $T H-35$ rail	34
BIS-412-LED 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	group (hotel)	-	-	-	-	-	for $\mathrm{TH}-35$ rail	34
BIS-412M 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	group (hotel)	-	-	-	-	-	for $\mathrm{TH}-35$ rail	34
BIS-412M 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	group (hotel)	-	-	-	-	-	for TH -35 rail	34
BIS-412M-LED 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	$1 \times \mathrm{NO}$	-	-	1	group (hotel)	-	-	-	-	-	for TH -35 rail	34
BIS-412M-LED 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	group (hotel)	-	-	-	-	-	for TH-35 rail	34
BIS-412P 230 V	$165 \div 265$ V AC	16 A	1×NO	-	-	1	group (hotel)	-	-	-	-	-	in flush-mounted box	34
BIS-413 230 V	$165 \div 265$ V AC	16 A	1×NO/NC	-	-	1	on/off	-	-	-	-	-	for $T H-35$ rail	33
BIS-413 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	33
BIS-413-LED 230 V	$165 \div 265$ V AC	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	33
BIS-413-LED 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	33
BIS-413M 230 V	$165 \div 265$ V AC	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	33
BIS-413M 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	33
BIS-413M-LED 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	33
BIS-413M-LED 24 V	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	1×NO	-	-	1	on/off	-	-	-	-	-	for TH-35 rail	33
BIS-414 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	2×16 A	2×NO/NC	-	-	2	gang (light) switch	-	-	-	-	-	for TH-35 rail	35
BIS-414 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	2×16 A	$2 \times \mathrm{NO} / \mathrm{NC}$	-	-	2	gang (light) switch	-	-	-	-	-	for TH-35 rail	35
BIS-414-LED 230 V	$165 \div 265$ V AC	$2 \times 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	2×NO	-	-	2	gang (light) switch	-	-	-	-	-	for TH-35 rail	35
BIS-414-LED 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$2 \times 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	2×NO	-	-	2	gang (light) switch	-	-	-	-	-	for TH-35 rail	35
BIS-416 230 V	$165 \div 265$ V AC	2×8 A	2×NO	-	-	2	on/off	-	-	-	-	-	in flush-mounted box	32
BIS-419 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$	2×16 A	$2 \times \mathrm{NO} / \mathrm{NC}$	-	-	2	sequential	-	-	-	-	-	for TH-35 rail	36
BIS-419 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	2×16 A	2×NO/NC	-	-	2	sequential	-	-	-	-	-	for $\mathrm{TH}-35$ rail	36
BIS-419-LED 230 V	$165 \div 265$ V AC	$2 \times 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	$2 \times \mathrm{NO}$	-	-	2	sequential	-	-	-	-	-	for $T H-35$ rail	36
BIS-419-LED 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$2 \times 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	$2 \times \mathrm{NO}$	-	-	2	sequential	-	-	-	-	-	for $T H-35$ rail	36

With the "on/off" feature

Functioning

The receiver is switched on after a current pulse caused by pressing any momentary (bell) button connected to the relay. After the next pulse, the receiver will be switched off. The relay does not have a "memory" of the contact position, which means in the event of a power failure and its subsequent return, the relay contact will be set to "off". This prevents the controlled receivers from being switched on automatically without supervision after a prolonged power failure.

BIS-402

power supply	$165 \div 265 \mathrm{VAC}$
contact	$1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	10 A
control pulse current	$<1 \mathrm{~mA}$
	triggered with Lor N level
activation delay	$0.1 \div 0.2 \mathrm{~s}$
power consumption	0.4 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 54$ (size $48 \times 43 \mathrm{~mm}), \mathrm{h=20mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	

(!) BIS-402 cannot work with backlit buttons.

BIS-408 / BIS-408-LED

power supply	$165 \div 265 \mathrm{VAC}$
contact	$1 \times$ NO
maximum load current (AC-1)	
BIS-408	16A
BIS-408-LED	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$
control pulse current	$<5 \mathrm{~mA}$
activation delay	$0.1 \div 0.2 \mathrm{~s}$
power indication	green LED
power consumption	
standby	0.15 W
on	0.6 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\phi 54$ (size $48 \times 43 \mathrm{~mm}$), h= 25 mm
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

BIS-408 / BIS-408-LED can work with backlit buttons.
Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.

Interesting and practical applications

Example of a lighting control system with three points in a corridor

BIS-411B / ... with an additional button on the front

power supply	
BIS-411... 230 V	$165 \div 265 \mathrm{VAC}$
BIS-411... 24V	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
contact/maximum load current (AC-1)	
BIS-411	separated $1 \times \mathrm{NO} / \mathrm{NC} / 16 \mathrm{~A}$
BIS-411-LED	separated $1 \times \mathrm{NO} / 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms}$)
BIS-411M	separated $1 \times \mathrm{NO} / \mathrm{NC} / 16 \mathrm{~A}$
BIS-411M-LED	separated $1 \times \mathrm{NO} / 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms}$)
BIS-411 22	separated $2 \times \mathrm{NO} / 2 \times 8 \mathrm{~A}$
BIS-411 1R1Z	separated $1 \times N O, 1 \times N C / 2 \times 8 \mathrm{~A}$
control pulse current	5 mA
activation delay	$0.1 \div 0.2 \mathrm{~s}$
power indication	green LED
power activation	red LED
power consumption	
standby	0.15 W
on	0.6 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Relays powered by 230 V can cooperate with backlit buttons.
(!)
Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.
(! Version with the " M " index - version with "memory" of the contact position, which means when the power supply is switched back on, the relay will be restored to the state it was when the power supply was switched off.

BIS-416

Functioning

The relay has 2 independently controlled channels. Control takes place via two separate signal inputs.
The pulse at input S1 controls output R1. The same applies to the pair of input S2 and output R2.

With timer switch

Functioning

The receiver is switched on after a current pulse caused by pressing any momentary (bell) button connected to the relay. Switching off the receiver will occur after the next pulse or automatically after the set time of switching off.
Pressing and holding the control button for more than 2 seconds will switch the lighting on permanently until the next pulse is given, which will switch off the relay.

BIS-403

power supply	$195 \div 253 \mathrm{VAC}$
contact	$1 \times \mathrm{NO}$
maximum load current (AC-1)	10 A
control pulse current	$<1 \mathrm{~mA}$
	triggered with L or N level
activation delay	$0.1 \div 0.2 \mathrm{~s}$
adjustment time	$1 \div 12 \mathrm{~min}$.
power consumption	0.8 W
terminal	$4 \times$ DY $1 \mathrm{~mm}^{2}, \mathrm{l}=10 \mathrm{~cm}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\phi 55, \mathrm{~h}=13 \mathrm{~mm}$
mounting	in flush-mounted box $\emptyset 60$
ingress protection	IP20

(!) BIS-403 cannot work with backlit buttons,

BIS-410 / BIS-410-LED

power supply	
BIS-410... 230 V	165 265 V VAC
BIS-410... 24V	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
contact	1×NO
maximum load current (AC-1)	
BIS-410	16A
BIS-410-LED	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$
control pulse current	$<5 \mathrm{~mA}$
activation delay	$0.1 \div 0.2 \mathrm{~s}$
adjustment time	$1 \div 15 \mathrm{~min}$.
power indication	green LED
power consumption	
standby	0.15 W
on	0,7 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 54$ (size $48 \times 43 \mathrm{~mm}$), $\mathrm{h}=25 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

BIS-410/BIS-410-LED can work with backlit buttons with a maximum current of 5 mA .
(!)
Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.

BIS-413/BIS-413-LED / BIS-413M / BIS-413M-LED

power supply	
BIS-413... 230V	$165 \div 265$ V AC
BIS-413... 24 V	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
contact	
BIS-413/BIS-413M	separated $1 \times \mathrm{NO} / \mathrm{NC}$
BIS-413-LED/BIS-413M-LED	separated $1 \times$ NO
maximum load current (AC-1)	
BIS-413/BIS-413M	16A
BIS-413-LED/BIS-413M-LED	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$
control pulse current	$<5 \mathrm{~mA}$ triggered with L or N level
activation delay	$0.1 \div 0.2 \mathrm{~s}$
adjustment time	$1 \div 12 \mathrm{~min}$.
power indication	green LED
power activation	red LED
power consumption	
standby	0.15 W
on	0.8W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

(!) Only relays supplied with 230 V can operate with backlit buttons with maximum current 5 mA .
Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.
Version with the " M " index - version with "memory" of the contact position, which means when the power supply is switched back on, the relay will be restored to the state it was when the power supply was switched off.

Group (hotel) with "Switch on everything" and "Switch off everything" control inputs

Purpose

Relays are designed to work in a group system. A single relay allows the controlled receiver to be switched on and off after each current pulse caused by pressing the momentary (bell) button of the local control. The group system allows you to switch off or on the central control buttons of all receivers connected to individual relays.

BIS-412 / BIS-412-LED / BIS-412M / BIS-412M-LED

power supply	
BIS-412... 230V	$165 \div 265$ V AC
BIS-412... 24V	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
contact	
BIS-412/BIS-412M	separated $1 \times \mathrm{NO} / \mathrm{NC}$
BIS-412-LED/BIS-412M-LED	separated $1 \times$ NO
maximum load current (AC-1)	
BIS-412/BIS-412M	16A
BIS-412-LED/BIS-412M-LED	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$
control pulse current	$\leq 5 \mathrm{~mA}$ triggered with N level
total backlight current control buttons	5 mA
activation delay	$0.1 \div 0.2 \mathrm{~s}$
power indication	green LED
power activation	red LED
power consumption	
standby	0.15 W
on	0.6W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

(!) Only relays supplied with 230 V can operate with backlit buttons.
(!)
Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.
(I Version with the " M " index - version with "memory" of the contact position, which means when the power supply is switched back on, the relay will be restored to the state it was when the power supply was switched off.

BIS-412P for flush-mounted box $\varnothing 60$

power supply	$165 \div 265$ V AC
contact	$1 \times \mathrm{NO}$
maximum load current (AC-1)	16A
control pulse current	$<1 \mathrm{~mA}$
total backlight current control buttons	5 mA
activation delay	$0.1 \div 0.2 \mathrm{~s}$
power activation	green LED
power consumption	
standby	0.15 W
on	0,7 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 54($ size $48 \times 43 \mathrm{~mm}), \mathrm{h}=25 \mathrm{~mm}$
mounting	in flush-mounted box $\emptyset 60$
ingress protection	IP20

Functioning

- Local control

The receiver is switched on after a current pulse caused by pressing anyone momentary button from the local control group.
The relay contact will be closed. After the next pulse, the contact will be open.

- Central control

- switch everything off - after the current impulse caused by pressing the momentary button, all connected relays will be switched off;
- switch everything on - after the current impulse caused by pressing the momentary button, all connected relays will be switched on.

Sequential (gang switch) - single-function

The sequential relay has 2 separate outputs. Each time the button is pressed, the status of the outputs will change according to the operating schedule shown below.

Sequence	Contact position
0	Sections R1 and R2 open
1	Only section R1 closed
2	Only section R2 closed
3	Sections R1 and R2 closed

- Subsequent pressings of a button repeat the sequence 0-3.

BIS-404

power supply	$165 \div 265 \mathrm{VAC}$
contact	$2 \times \mathrm{NO}$
maximum load current (AC-1)	2×8A
control pulse current	$<1 \mathrm{~mA}$
total backlight current control buttons	5 mA
activation delay	$0.1 \div 0.2 \mathrm{~s}$
power indication	green LED
power consumption	
standby	0.15 W
on	0,7 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 54($ size $48 \times 43 \mathrm{~mm}), \mathrm{h}=20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

(!) BIS-404 can work with backlit buttons.

BIS-414/BIS-414-LED

power supply	
BIS-414... 230 V	$165 \div 265$ V AC
BIS-414... 24 V	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
contact	
BIS-414	$2 \times \mathrm{NO} / \mathrm{NC}$
BIS-414-LED	$2 \times \mathrm{NO}$
maximum load current ($\mathrm{AC}-1$)	
BIS-414	$2 \times 16 \mathrm{~A}$
BIS-414-LED	$2 \times 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$
control pulse current	$<1 \mathrm{~mA}$
total backlight current control buttons	5 mA
activation delay	$0.1 \div 0.2 \mathrm{~s}$
power indication	green LED
power activation	$2 \times$ red LED
power consumption	
standby	0.15 W
on	0,7 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

(!) Only the 230 V relays can work with the backlit buttons.
(!)
Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.

Interesting and practical applications

Example of a lighting system for controlling the light intensity by switching on sections R1 and R2 respectively

Sequential (gang switch) - four-function

A mode

- Subsequent pressings of a button repeat the sequence 0-3.

C mode

- Subsequent pressings of a button repeat the sequence 0-2.

B mode

- Pressing the button again in less than 5 seconds repeats sequences 1-3.
- Pressing the button again after more than 5 seconds opens both contacts (sequence 0).
- A long press of the button - in any sequence - opens both contacts (sequence 0).
- After switching off both relays, pressing the button again restores the state from before switching off (state memory). This does not apply to relay power failure.

D mode

- Pressing the button again in less than 5 seconds repeats sequences 1-2.
- Pressing the button again after more than 5 seconds opens both contacts (sequence 0).
- A long press of the button - in any sequence - opens both contacts (sequence 0).
- After switching off both relays, pressing the button again restores the state from before switching off (state memory). This does not apply to relay power failure.

BIS-409

power supply	$165 \div 265 \mathrm{VAC}$
contact	$2 \times \mathrm{NO}$
maximum load current (AC-1)	2×8 A
control pulse current	$<1 \mathrm{~mA}$
total backlight current control buttons	5 mA
activation delay	$0.1 \div 0.2 \mathrm{~s}$
power indication	LED green
power consumption	
standby	0.15 W
on	0.6W
terminal	rew terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions \quad ¢5	$\mathrm{m})$, $\mathrm{h}=20 \mathrm{~mm}$
mounting	unted box $\varnothing 60$
ingress protection	IP20

[^1]BIS-419 / BIS-419-LED

8 R2 - 9
11 R1 12
BIS-419-LED
power supply
BIS-419 230 V
BIS-419 230V
BIS-419 24 V contact maximum load current (AC-1)
$165 \div 265 \mathrm{VAC}$ $9 \div 30 \mathrm{VAC} / \mathrm{DC}$
BIS-419-LED separated $2 \times$ NO $/ 2 \times 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$
control pulse current $<1 \mathrm{~mA}$
total backlight current control buttons 5 mA

activation delay	$0.1 \div 0.2 \mathrm{~s}$
power indication	LED green
power operation	$2 \times$ LED red

power operation

standby	0.15 W
on	0.9 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals

terminal	$2.5 \mathrm{~mm}^{2}$ screw terminal
tightening torque	0.4 Nm

tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$

dimensions 1 module $(18 \mathrm{~mm})$

[^2](! Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.

Purpose

Lighting dimmer is used for switching on and off the lighting with the ability to adjust its intensity.

Functioning

The lighting is switched on after a current pulse caused by pressing the momentary (bell) button connected to the dimmer. The lighting will be switched off after the next pulse. Press and hold the button for >1 second to set the desired illumination level (smooth adjustment of the lighting in the loop: brighter/ darker/brighter).
The lighting can be controlled with multiple buttons connected in parallel and placed at different points in the room.

For incandescent and halogen lamps

A group of dimmers designed for incandescent and halogen lamps (also powered by a transformer or electronic power supply, adapted to cooperate with dimmers). With some electronic power supplies, dimmers may work incorrectly (causing, for example, a flickering of the lighting). For some types, you should connect light bulbs or halogens with a total power of at least 50% of the rated power of the power supply. Dimmers can work with backlit buttons. It is recommended to carry out tests before the final installation.

Without "memory" of light intensity settings

Functioning

After each switching on, the lighting returns to maximum brightness.

SC0-801
300 W

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current	$1,3 \mathrm{~A}$
maximum power connected light bulbs	300 W
power consumption	0.1 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 54($ size $48 \times 43 \mathrm{~mm}), \mathrm{h}=20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

SCO-811 350w

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current	1.5 A
maximum power connected light bulbs	350 W
power consumption	0.1 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

SCO-813
1000W

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current	$4,5 \mathrm{~A}$
maximum power connected light bulbs	1000 W
overload protection	fuse
	electronic and safety 6.3 A
power consumption	0.3 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	3 modules $(52.5 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

With "memory" of light intensity settings

Functioning

After switching on the lighting by pressing the button, the lighting returns to the previously set value

After a dimmer power failure, the first switching on sets the brightness to 100%. Does not apply to SCO-802-LED.

SCO-802-LED 150 w , for LED lighting

power supply	$195 \div 265 \mathrm{VAC}$
power tolerance	$-20 /+10 \%$
maximum load current (AC-1)	1.3 A
maximum power connected light bulbs	150 W
power consumption	$<0.25 \mathrm{~W}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.3 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 54$ (size $48 \times 43 \mathrm{~mm}), \mathrm{h}=20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	

Functions

- Can be connected to both 3-wire and 2-wire installation, without available neutral wire, in the installation box;
- Memory of set brightness level (also after power failure and its return);

SCO-802 300W, for incandescent lighting

SC0-812 350w

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current	1.5 A
maximum power connected light bulbs	350 W
power consumption	0.1 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

SCO-814

1000 W

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current	4.5A
maximum power connected light bulbs	lbs 1000W
overload protection	fuse
	electronic and safety 6.3 A
power consumption	0.3 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

For 12 V LED lighting

With "memory" of light intensity settings

Functioning

After each switching on, the lighting returns to previously set brightness.

SCO-803
 36 W

power supply	$11 \div 14 \mathrm{VDC}$
maximum load current	3 A
maximum power connected light bulbs	36 W
power consumption	0.1 W
terminal	$6 \times L Y$
$0.75 \mathrm{~mm}^{2}, \mathrm{I}=10 \mathrm{~cm}$	
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 55, \mathrm{~h}=13 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

For incandescent and halogen lamps as well as LED and compact fluorescent lamps with dimming capability

SCO-815 up to 500w

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current	2 A
maximum power connected light bulbs	
(R)	500 W
(L)	500 W
(C)	500 W
(ESL)	100 W
(LED)	100 W
control voltage	$9 \div 230 \mathrm{VAC} / \mathrm{DC}$
power consumption	0.1 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$1 P 20$

Purpose

The universal lighting dimmer that allows you to adjust the brightness of the lighting of the following light sources:

- Standard incandescent and halogen lamps (resistive load R);
- Lamps powered by a toroidal transformer (inductive load L);
- Lamps powered by an electronic transformer (capacitive load C);
- Energy-saving compact fluorescent lamps (ESL) with dimming function;
- LED lamps (230 V) with the dimming function.

Functioning

The lighting is switched on after pressing the momentary (bell) button connected to the dimmer. The lighting can be controlled with multiple buttons connected in parallel and placed at different points in the room. The next press of a button will switch off the lighting. Press and hold the button for more than 1 second to set the desired light intensity.

Functions

- Automatic detection of the nature of the $\mathrm{R}+\mathrm{L}$ and $\mathrm{R}+\mathrm{C}$ load. The use of ESL and LED lamps require manual adjustment of the load characteristic using the knob on the front of the dimmer.
- Set the speed of the brightness adjustment;
- "Memory" function of lighting intensity settings - after each switching on, the lighting returns to the previously set brightness;
- "Soft start" feature - holding the button for >1 second while switching on the lighting causes its smooth illumination from "zero" (darker => brighter);
- Setting the minimum light level of the controlled lamp (particularly important for ESL lamps, which require a minimum starting and back-up current);
- ON mode - switching lighting on to maximum brightness without the ability to dim it;
- Control input is galvanically isolated from the mains with a wide range of input voltage $9 \div 230 \mathrm{~V} \mathrm{AC/DC}$;
- Smooth lighting and dimming to extend the life of the controlled lamp.

SC0-816

SCO-816A
SC0-816D
SC0-816M
basic version
with $1 \div 10 \mathrm{~V}$ analog input
with DALI protocol
with Modbus RTU protocol

Purpose

The SCO-816 universal dimmer is designed to control the brightness of dimmable high power light sources, such as: incandescent and halogen lamps, toroidal transformers and adjustable electronic transformers, dimmable LED bulbs and dimmable energy-saving LED lamps.

Functioning

The lighting is switched on by a current pulse caused by the momentary press of a button. A subsequent short press of the button switches off the light. A long press of a button brightens/dims the light. The Dimmer has a memory function - subsequent switching on by the short press of the button will restore the last set brightness level.
Thanks to the ability of zero power switching, the sharp current surge that occurs when the capacitive receivers are switched on is reduced, which prevents overloading of the installation. Built-in dual overcurrent protection (fast electronic fuse and safety fuse) increases the operating safety of the device in the event of an output overload. The built-in fan and temperature control system prevents the excessive rise of the temperature of the device. If the alarm temperature is exceeded, the load will be automatically disconnected.
If the thermal protection or overload protection is triggered, the light is automatically switched off.
It is possible to switch on the light again after the elimination of the cause of the failure and subsequent pressing of the button.

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current	16A
maximum power connected lamps	
incandescent and halogen	3500 W
inductive and capacitive	2300 W
overload protection	fuse
power consumption	0.1 W
terminal	
low voltage side	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
high voltage side	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
tightening torque	0.5 Nm
working temperature	$0 \div 40^{\circ} \mathrm{C}$
dimensions	$188 \times 90 \times 93 \mathrm{~mm}$
mounting	
ingress protection	IP20

Load
3500 W - resistive load: incandescent and halogen lamps.
2300 W - inductive and capacitive load: toroidal transformers, adjustable electronic transformers, and dimmable LED and ESL bulbs.

The actual load limit value depends on the ambient temperature.
If the operating temperature exceeds the limit value, the permissible load value is reduced.

Motion sensors

Purpose

Motion sensors are used for automatic, timed switching on of the lighting in case a person or other object appears in such places as: corridors, courtyards, driveways, garages, etc. The use of motion sensors to automatically switch on the lighting makes the lighting more convenient and cheaper to use.

PIR (infrared)

Functioning

The sensor detects the movement of infrared radiation sources. The efficiency of operation depends on the size of the object, its temperature, direction and speed of movement. When motion is detected, the lighting is switched on. When the movement is no longer detected, the light will remain switched on for a user-defined period of time. The motion sensor has a built-in twilight switch which makes it impossible to switch on the controlled lighting during the day. The DR sensors can operate indoors and outdoors, in places where they are not exposed to direct rainfall/snow and cannot be splashed with water or other liquids.

DR-03
white

DR-04W / DR-04B
white/black, hermetic IP65

power supply	$195 \div 265$ V AC
maximum load current (AC-1)	5 A
twilight activation threshold	$3 \div 20001 \mathrm{~lx}$
motion of detection	$0.6 \div 1.5 \mathrm{~m} / \mathrm{s}$
switch-off time	$10 \mathrm{~s}(\pm 3 \mathrm{~s}) \div 15 \mathrm{~min}$. $(\pm 2 \mathrm{~min}$.)
horizontal detection field	180°
vertical detection field	45°
maximum radius detection ($\mathrm{T}<24^{\circ} \mathrm{C}$)	12 m
range of head rotation (horizontally)	60°
range of head rotation (vertically)	180°
sensor mounting height	$1.8 \div 2.5 \mathrm{~m}$
power consumption	0.5 W
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.3 Nm
working temperature	$-20 \div 40^{\circ} \mathrm{C}$
dimensions	
head set horizontally	$80 \times 52 \times 120 \mathrm{~mm}$
head set vertically	$80 \times 52 \times 95 \mathrm{~mm}$
mounting	surface
ingress protection	IP65

The sensor head can move in two planes, allowing for precise adjustment of the detection field depending on the individual requirements of the user.

DR-05W / DR-05W 24V / DR-05B / DR-05B 24V white/black

The sensor head can move in two planes, allowing for precise adjustment of the detection field depending on the individual requirements of the user.

DR-06W / DR-06W 24V/DR-06B /DR-06B 24V white/black

DR-07 ceiling-mounted, built-in

DR-09
ceiling-mounted motion detector with presence detector function, white
DR-09B ceiling-mounted motion detector with presence detector function, black NEW!

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current (AC-1)	10A
twilight activation threshold	$3 \div 20001 \mathrm{x}$
motion of detection	$0.6 \div 1.5 \mathrm{~m} / \mathrm{s}$
switch-off time	$3 \mathrm{~s} \div 9 \mathrm{~min}$. $\pm 2 \mathrm{~min}$.)
horizontal detection field	360°
maximum radius detection ($\mathrm{T}<24^{\circ} \mathrm{C}$)	10 m
sensor mounting height	$2.2 \div 6 \mathrm{~m}$
power consumption	
standby	0.10 W
on	0.45 W
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.3 Nm
working temperature	$-20 \div 40^{\circ} \mathrm{C}$
dimensions	$102 \times 102 \mathrm{~mm}, \mathrm{~h}=55 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP20

DR-09-IP65
hermetic, ceiling-mounted motion detector with presence detector function, white

power supply	$195 \div 265$ V AC
maximum load current (AC-1)	10 A
twilight activation threshold	3 $\div 20001 \mathrm{l}$
motion of detection	$0.6 \div 1.5 \mathrm{~m} / \mathrm{s}$
switch-off time	$3 \mathrm{~s} \div 9 \mathrm{~min}$. $(\pm 2 \mathrm{~min}$.)
horizontal detection field	360°
maximum radius detection ($\mathrm{T}<24^{\circ} \mathrm{C}$)	10 m
sensor mounting height	$2.2 \div 6 \mathrm{~m}$
power consumption	
standby	0.10w
on	0.45 W
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.3 Nm
working temperature	$-20 \div 40^{\circ} \mathrm{C}$
dimensions	$102 \times 102 \mathrm{~mm}, \mathrm{~h}=55 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP65

Functioning

PIR detector dedicated to high rooms, especially warehouses.
For mounting at a height of 15 metres, the diameter of the detection field reaches 20 metres.

Detection area czujnika DR-30M

Microwave sensor with occupancy sensor feature

Functioning
The microwave sensor detects changes in the reflection of high-frequency electromagnetic waves caused by the movement of objects. It is characterized by high detection sensitivity and independence from the influence of temperature. When motion is detected, the lighting is switched on. If a motion is no longer detected, the light will remain switched on for the set period of time. The motion sensor has a built-in twilight switch which makes it impossible to switch on the controlled lighting during the day.
The sensor can also detect movement through wooden, plasterboard, glass and plastic panels.
The power of microwave radiation is low and completely safe for humans and animals. Its value is below 10 mW .
For comparison, the mobile phone radiates with a power of approx. 1000 mW ($\mathbf{1 0 0}$ times stronger).

DRM-01/DRM-01 24V for build-in

power supply	
DRM-01	$195 \div 265 \mathrm{VAC}$
DRM-01 24 V	$21 \div 27 \mathrm{VAC}$
maximum load current (AC-1)	A
frequency of microwaves radiation	5.8 GHz
radiation power	10 mW
detection field	360°
detection radius (adjustable)	
for $\mathrm{h}=2.5 \mathrm{~m}$	1 110 m
twilight activation (adjustable)	2 20001 x
switch-on time of receiver (adjustable)	$5 \mathrm{~s} \div 12 \mathrm{~min}$.
activation delay	1s
power consumption	0.9 W
terminal	$1.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.25 Nm
working temperature	-25 $550^{\circ} \mathrm{C}$
dimensions	$46 \times 93 \times 42 \mathrm{~mm}$
mounting	for build-in
mounting height	2 $\div 6 \mathrm{~m}$
ingress protection	IP20

DRM-02/DRM-02 24V
 ceiling-mounted

power supply	
DRM-02	$195 \div 265 \mathrm{VAC}$
DRM-02 24V	$21 \div 27 \mathrm{VAC}$
maximum load current (AC-1)	5A
frequency of microwaves radiation	5.8 GHz
radiation power	10 mW
detection field	360°
detection radius (adjustable) for $\mathrm{h}=2.5 \mathrm{~m}$	$1 \div 10 \mathrm{~m}$
twilight activation (adjustable)	2 $\div 20001 \mathrm{~lx}$
switch-on time of receiver (adjustable)	$5 \mathrm{~s} \div 12 \mathrm{~min}$.
activation delay	1 s
power consumption	0.9 W
terminal	$1.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.25 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 103 \mathrm{~mm} ; \mathrm{h}=44 \mathrm{~mm}$
mounting	surface-mounted
mounting height	$2 \div 6 \mathrm{~m}$
ingress protection	IP40

(! The DRM-02 sensor can work with LED lamps.

DRM-07
for flush-mounted box $\varnothing 60$
(AC-1)

power supply	$195 \div 265 \mathrm{VAC}$
maximum load current (AC-1)	10 A
frequency of microwaves radiation	5.8 GHz
radiation power	10 mW
motion of detection	$0.6 \div 1.5 \mathrm{~m} / \mathrm{s}$
detection area	360°
maximum radius detection (adjustable) for $\mathrm{h}=2.5 \mathrm{~m}$	$1 \div 8 \mathrm{~m}$
twilight activation (adjustable)	$3 \div 20001 \mathrm{x}$
switch-on time of receiver (adjustable)	$10 \mathrm{~s}(\pm 3) \div 12 \mathrm{~min}$. ± 1)
activation delay	<1s
power consumption	0.9 W
terminal	$1.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.25 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\emptyset 115, \mathrm{~h}=24 \mathrm{~mm}$
mounting	surface-mounted
mounting height	$2 \div 6 \mathrm{~m}$
ingress protection	IP20

Laser sensors

DRL-12 with a distance sensor

Functioning

The DRL-12 is a laser distance sensor that detects obstacles in the range of 0 to 2 meters. Thanks to the low dispersion angle of the beam and precise detection range adjustment, it is ideal for switching on lighting circuits for example in open staircases, where it is important that the sensor detects presence only on stairs and ignores everything that happens outside them.

power supply	$9 \div 27 \mathrm{VDC}$
maximum load current (AC-1)	4A
detection range (adjustable)	$0.1 \div 2.0 \mathrm{~m}$
brightness level (adjustable)	2 $\div 5001 \mathrm{x}$
switch-on time (adjustable)	$0 \div 10 \mathrm{~min}$.
detection	
sensor	laser sensor ToF
wave length	940 nm
security	1 class
beam scattering	$\pm 18^{\circ}$
power consumption	0.3W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-10 \div 45^{\circ} \mathrm{C}$
dimensions	
external	$45 \times 45 \times 1.5 \mathrm{~mm}$
internal (box)	$\emptyset 32$, depth $=45 \mathrm{~mm}$
mounting	in flush-mounted
ingress protection	IP40

Functions

- Laser distance sensor of the ToF (Time of Flight) type;
- Detection range can be smoothly adjusted in the range of 0.1 to 2 m ;
- Brightness sensor that prevents the light from being switched on during the day;
- Adjustable switch-on time;
- Possibility of the direct control of $12 / 24 \mathrm{~V}$ lighting circuits (load capacity up to 4 A , which can be increased by connecting LED-AMP amplifiers);
- Soft start and soft shutdown feature available for controlled lighting circuits (in combination with dimmable LED lamps, for example with F\&F staircase light fittings);
- Ability to trigger AS-225 cascade controllers;
- Compact size; can be mounted in a $\varnothing 40 \mathrm{~mm}$ box supplied with the sensor;
- LED indicating the operating status of the sensor.

Color variants

type	standard	afromosia	beech	oak	ash	merbau	walnut	pine
white	\bullet	-	-	-	-	-	-	-
black	\bullet							
satin	-	\bullet						

Ceiling lights with built-in microwave motion sensor

DRM-04 LED (×96) 15 W

DRM-05

E27 25 W

DRM-06
LED (×160) 10 W

Lighting controllers

Current surge arresters

Purpose

The MST is used for the reduction of current surges occurring when LED lighting, halogen lamps, impulse power supplies, etc. are switched on. In addition to extending the service life of the MST receivers, it also prevents overcurrent protection from being triggered by a sharp current surge.

Functioning

At the moment the device is connected into series with a load, an additional NTC thermistor is switched on to limit the current to a value safe for the installation and typical overcurrent protection. After an approximately 1 s the thermistor is disconnected and from this moment the receiver is supplied with full mains voltage.

There is no effect of gradual illumination of lamps.

MST-01

input voltage IN	$195 \div 253 \mathrm{VAC}$
output voltage OUT	UoUT $=$ UIN
maximum load current (AC-1)	8 A
executive element	relay +NTC thermistor
switching time	1 s
power consumption	0.1 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

MST-02

input voltage IN	$195 \div 253 \mathrm{VAC}$
output voltage OUT	UouT=UIN
maximum load current (AC-1)	8 A
executive element	relay +NTC thermistor
switching time	1 s
power consumption	0.1 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface
ingress protection	IP20

MST-03

inrush current limiter for 230 V AC circuits

Purpose

MST-03 is designed to limit current overcurrents occurring when switching on the power supply of circuits with inductive or capacitive characteristics (such as LED lighting, pulse power supplies, lighting fixtures) or non-linear characteristics (such as incandescent and halogen lamps).

input voltage IN	$195 \div 253 \mathrm{VAC}$
output voltage OUT	UOUT $=\mathrm{UIN}$
maximum load current (AC-1)	30 A
executive element	relay+NTC thermistor
switching time	$1 \div 1.5 \mathrm{~s}$
power consumption	$<1 \mathrm{~W}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules $(35 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Lighting brightness controls with weekly timer

Purpose

Brightness controllers with weekly timer are designed for program control of brightness levels according to the individual time program set by the user.

Functions

- Up to 480 program steps can be programmed (day/days of the week, hour, minute, brightness level);
- Operation in the following modes:
- automatic - according to the commands programmed by the user in the timer memory;
- manual - manual control of switching on/off and brightness level;
- semi-automatic - the ability to manually control the brightness level in automatic mode.

The change will be effective until the next switch on/off resulting from the automatic operation cycle.

- Local input - the ability to control the brightness using an additional button connected to the controller;
- Programmable brightening/dimming time;
- Automatic change of time;
- Date preview and current program preview;
- Output status memory in the case of a manual operation mode;
- Replaceable battery type 2032.

PCZ-531LED

with LED $9 \div 30 \mathrm{~V}$ control output

power supply	$9 \div 30 \mathrm{VDC}$
output	open collector OC
maximum load current	8A/50VDC
input	potential-free (triggered with 0 V)
backup time clock operation	6 years*
battery type	2032 (lithium)
display maintenance	none
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
time program setting accuracy	1 min .
program memory cells	480
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 9ㅜ30 V DC power supply;
- Direct load control up to 8A;
- Programmable brightness characteristics - the ability to adapt to any dimmable lamp or LED strip.

PCZ-531A10

with $1 \div 10 \mathrm{~V}$ analog output

power supply	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$
analog output	$1 \div 10 \mathrm{~V} / 30 \mathrm{~mA}$
auxiliary contact	separated $1 \times$ NO
maximum load of the auxiliary contact	6A/250 V AC
input	potential-free (short-circuit 3-4)
backup time clock operation	6 years*
battery type	2032 (lithium)
display maintenance	none
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
time program setting accuracy	1 min .
program memory cells	480
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20
* battery life addicted to weather cond	s and frequency of mains failure

Functions

- $85 \div 265 \mathrm{VAC} / \mathrm{DC}$ power supply;
- $1 \div 10 \mathrm{~V}$ analog output voltage;
- Additional $6 \mathrm{~A} / 250 \mathrm{~V}$ AC relay output activated when the light is switched on. To be used, for example, as a contactor control for switching on the power supply of the controlled lamps.

LED-AMP-1D

Power supply signal amplifier for LED lighting, for DIN rail

Purpose

The LED-AMP-1D controller is an amplifier of the signal powering the LED lighting $12 / 24 \mathrm{~V}$ DC. The principle of operation is to reproduce at the output of the amplifier the PWM control signal supplied to the input system. The energy to supply the next lighting segment is taken from the power supply unit connected to the amplifier. Galvanic separation between the input and output of the amplifier enables unlimited expansion of the lighting chain, without the risk of problems associated with supplying power from different phases or long ground loops.

power supply	$9 \div 30 \mathrm{VDC}$
input	
voltage	$6 \div 30 \mathrm{VDC}$
current	5 mA
control signal	PWM
output	
voltage as the power sup	oly voltage
current (max)	16A
actuator	transistor
separation between the output and the input	
type	galvanic
level	2.5 kV
power consumption	
lout $=0 \mathrm{~A}$	<0.05 W
lout $=16 \mathrm{~A}$	<1.2 W
working temperature (without condensation of steam)	$-15 \div 50^{\circ} \mathrm{C}$
temperature protection	$65^{\circ} \mathrm{C}$
indication power, brig temperatu	ness level, exceeding
terminal $\quad 2.5 \mathrm{~mm}^{2}$ scr	terminals
tightening torque	0.4 Nm
mounting	TH-35 rail
dimensions 1 mod	(18 mm)
ingress protection	IP20

LED-AMP-1P

Power supply signal amplifier for LED lighting, for $\varnothing 60$ flush-mounted box

Purpose
The LED-AMP-1P controller is an amplifier of the signal powering the LED lighting $12 / 24 \mathrm{~V}$ DC. The principle of operation is to reproduce at the output of the amplifier the PWM control signal supplied to the input system. The energy to supply the next lighting segment is taken from the power supply unit connected to the amplifier. Galvanic separation between the input and output of the amplifier enables unlimited expansion of the lighting chain, without the risk of problems associated with supplying power from different phases or long ground loops.

power supply	$9 \div 30 \mathrm{VDC}$
input	
voltage	$6 \div 30 \mathrm{VDC}$
current	5 mA
control signal	PWM
output	
voltage as the power sup	oly voltage
current (max)	16A
actuator	transistor
separation between the output and the input	
type	galvanic
level	2.5 kV
power consumption	
lout $=0 \mathrm{~A}$	<0.05 W
lout $=16 \mathrm{~A}$	<1.2 W
working temperature (without condensation of steam)	$-15 \div 50^{\circ} \mathrm{C}$
temperature protection	$65^{\circ} \mathrm{C}$
indication power, bri temperatu	ness level, exceeding
terminal $\quad 2.5 \mathrm{~mm}^{2}$ scr	terminals
tightening torque	0.4 Nm
mounting in flush mou	ed box $\varnothing 60$
dimensions 48	$43 \times 20 \mathrm{~mm}$
ingress protection	IP20

Use of two DRL-12 sensors to control stair lighting

Section ||

 Building automation systemsChapter 9
Roller shutter controllers 54
Chapter 10
Fox - Wi-Fi control system 60
Chapter 11
F\&Home - smart home wired system 65
Chapter 12
F\&Home RADIO - smart home radio system 68
Chapter 13Smart Home for developers73

Roller shutter controllers

Purpose

Roller shutter controllers are designed to control roller shutters (up/down) or other devices driven by a single-phase AC motor (such as gates). The control is carried out by means of monostable (bell) buttons. The controller can operate as a stand-alone device (designed to open/close one roller shutter), or it can be combined into groups allowing for central control of multiple roller shutters.

Functioning
The roller shutter motor is activated by pressing a button connected to one of the control inputs. The motor is switched on for a time programmed earlier by the user, allowing the roller shutter to be fully raised or lowered. It is possible to stop the running roller shutter at a level selected by the user (incomplete opening or closing of the roller shutter).

Universal

Functions

- Local and central control;
- Universal one-button or two-button control (not applicable for GS2-STR-3 controller);
- Lock function - a permanent signal at the "Central-Down" input; prevents all buttons from being controlled until the signal is removed;
- Direction memory - for local and central control. If the controller executes the "Central-Up" command, then the next pressing of the local button will start the roller shutter down;
- Asynchronous start - the time of switching on the roller shutter in the central control is randomly delayed (by maximum 1 second) in order to minimize the current surge in the mains caused by simultaneous switch-on of many motors.

Functioning

- Local control

Depending on the connection method, the controller can operate in one-button or two-button mode:
Two local buttons
Each movement direction has its own local button. Short press (<0.5 seconds) of a button causes the roller shutter to start to move in a preset direction for a programmed period of time. If the roller shutter is already in motion when the button is pressed, it will be stopped. Long press (>0.5 seconds) of a button causes the roller shutter to start to move in a preset direction for the whole time the button is pressed (this function allows you, for example, to adjust the tilt of the slats).
One local button
The local control input "Down" is permanently connected to the N line (STR-3 controllers) or + line (STR-4 controllers). A button is connected to the "Up" local control input, which alternately switches the roller shutter to operate in one direction or the other. Short press (<0.5 seconds) of a button switches on the roller shutter for a programmed period of time. If the roller shutter is already in motion when the button is pressed, it will be stopped. Long press (>0.5 seconds) of a button causes the roller shutter to switch on for the whole time the button is pressed. Each subsequent press of the button will activate the roller shutter in the opposite direction to the previous one.

- Central control

The controller always cooperates with two central control inputs. The central control system allows the roller shutters to be switched on for movement only in the selected direction. The roller shutter will stop only after the programmed time has elapsed or after any local control button has been pressed. The "Central-Down" button performs an additional function of closing and locking the roller shutter in the closed position. If the "Central-Down" button is pressed and left in the ON position, the controller will close the roller shutter and will not allow it to be opened until the "Central-Down" button is released (the operation of the remaining inputs will then be disabled). This function allows you to block roller blinds in case of, for example, alarm arming, rainfall detection (after using the additional STR-R rain sensor) or too strong wind (after using the additional STR-W wind sensor).

STR-4P for 12/24 V DC motors

STR-3D
for 230 V AC motors

power supply	$100 \div 265 \mathrm{VAC}$
load capacity (AC-1/AC-3)	$8 \mathrm{~A} / 1.5 \mathrm{~A}$
power consumption	$<0.15 \mathrm{~W}$
standby	$<0.6 \mathrm{~W}$
on	triggered with N level
control	$1 \mathrm{~s} \div 15 \mathrm{~min}$.
switch-on time (adjustable)	$-15 \div 50^{\circ} \mathrm{C}$
working temperature	$2.5 \mathrm{~mm}^{2}$ screw terminals
terminal	0.4 Nm
tightening torque	1 module $(18 \mathrm{~mm})$
dimensions	for $\mathrm{TH}-35 \mathrm{rail}$
mounting	IP2O
ingress protection	

STR-4D for $12 / 24 \mathrm{~V}$ DC motors

power supply	$10 \div 27 \mathrm{VDC}$
load capacity	6 A
power consumption	
standby	<0.15 W
on	<0.6 W
control	triggered with $10 \div 27 \mathrm{~V}$ DC level
switch-on time (adjustable)	$1 \mathrm{~s} \div 15 \mathrm{~min}$.
working temperature	$-15 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Purpose

GS2-STR-3 is a controller for roller shutters with 230 V AC motors that is integrated with a double glass button enabling local control of the roller shutter (up and down). The controller is also equipped with central control inputs enabling the controller to be connected to group control systems along with other GS2-STR-3 or classic STR-3P or STR-3D controllers.

power supply	$100 \div 265$ V AC
load capacity (AC-1/AC-3)	$8 \mathrm{~A} / 1.5 \mathrm{~A}$
power consumption	
standby	<0.15 W
on	<0.8 W
control	
local	buttons on the glass housing
central	triggered with N level
switch-on time (adjustable)	$1 \mathrm{~s} \div 15 \mathrm{~min}$.
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	spring terminals, cable $0.5 \div 2.5 \mathrm{~mm}^{2}$
dimensions	
external (glass frame)	$81 \times 81 \times 12 \mathrm{~mm}$
internal (box)	¢58.5 mm, depth 15 mm
mounting	in flush-mounted box $\emptyset 60$
ingress protection	
front	IP50
back	IP20

Application

Double button, white

GS2-230-W

Double button, black

GS2-230-B

STR-W

wind speed sensor

Purpose

The STR-W controller along with an external wind sensor is designed to monitor the current wind speed.
If the wind speed exceeds the preset threshold value, the internal relay will be activated.
The controller operates in two modes:
Continuous mode - If the wind speed exceeds the preset value, the internal relay contact closes and remains closed until the gusts of wind cease (Lockout).
Pulse mode - If the wind speed exceeds the preset value, the contact of the internal relay closes for approx. 1.5 seconds, transmitting a one-time shutdown command to the roller shutter controllers. The adjustment range for both modes is the same: $20 \div 70 \mathrm{~km} / \mathrm{h}$.

power supply	
power consumption	$100 \div 265 \mathrm{VAC}$
standby	
on	$<0.2 \mathrm{~W}$
working temperature	$<0.6 \mathrm{~W}$
terminal	$-15 \div 50^{\circ} \mathrm{C}$
tightening torque	$4.0 \mathrm{~mm}^{2}$
screw	terminals
dimensions	0.5 Nm
mounting	$67 \times 50 \times 26 \mathrm{~mm}$
ingress protection	surface

wind sensor

dimensions	$\varnothing 0, \mathrm{~h}=85 \mathrm{~mm}$ cable$\quad 2 \times 0.25 \mathrm{~mm}^{2}, \mathrm{I}=5 \mathrm{~m}$
mounting	flat bar (L-profile) $150 \times 70 \times 3 \mathrm{~mm}$
ingress protection	IP65

STR-R

precipitation sensor (rain/snow)

Purpose

The STR-R controller with an external precipitation sensor is designed to detect rainfall. In combination with the STR-3 or STR-4 roller shutter controllers, the STR-R controller allows building a system in which the window shutters will be closed or the awnings will be rolled up in case of rainfall. The controller operates in two modes:
Continuous mode - when the precipitation starts, the contact of the internal relay closes and remains closed throughout the precipitation period (Lockout).
Pulse mode - when the precipitation starts, the contact of the internal relay closes for approx. 1.5 seconds, transmitting a one-time shutdown command to the roller shutter controllers.

power supply	$100 \div 265$ VAC
power consumption	
standby	<0.2 W
on	<0.6 W
working temperature	$-15 \div 50^{\circ} \mathrm{C}$
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
dimensions	$67 \times 50 \times 26 \mathrm{~mm}$
mounting	surface mounting
ingress protection	IP20
precipitation sensor	
dimensions	$55 \times 50 \times 13 \mathrm{~mm}$
cable	$3 \times 0.25 \mathrm{~mm}^{2}$, $1=5 \mathrm{~m}$
mounting	screw hole $\varnothing 3$ /adhesive tape
ingress protection	IP65

Schematic diagram of the manual and automatic control system using system sensors and other control relays

Two-button: 2 local control buttons "Up" and "Down"

Functioning

- Local control

Buttons controlling one roller shutter; \uparrow - up (opening); \downarrow - down (closing). Pressing the local button switches on the roller shutter for movement in a selected direction. If the roller shutter is already in motion, pressing the local control button will stop the roller blind.

- Central control

A group of buttons common to many controllers (at least two) controls all roller shutters in the central control system: $\uparrow \uparrow-$ all up; $\downarrow \downarrow$ - all down. Pressing the local button switches on the roller shutter for movement in a selected direction. If one of the roller blinds is already moving in the same direction, then the movement will be continued. If it moves in the opposite direction, the roller shutter will be stopped first and then switched on in the direction resulting from the command given to the central input.

The central control system allows the roller shutters to be switched on for movement only in the selected direction.
The roller shutter will stop only after the programmed time has elapsed or after any local control button has been pressed.

STR-1
 modernization

A classic solution with a new insides. Streamlined design reduces power consumption and increases device durability.

power supply	$195 \div 253$ V AC
maximum load current (AC-1/AC-3)	$8 \mathrm{~A} / 1.5 \mathrm{~A}$
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
switch-on time (adjustable)	$0 \mathrm{~s} \div 10 \mathrm{~min}$.
power/programming indication	LED green
power consumption	<1W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
signal terminal	$4 \times$ DY $1 \mathrm{~mm}^{2}, \mathrm{l}=10 \mathrm{~cm}$
supply terminal	$2 \times$ DY $1.5 \mathrm{~mm}^{2}, \mathrm{l}=10 \mathrm{~cm}$
dimensions	$\phi 55, \mathrm{~h}=20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

STR-21

STR-421

power supply	
STR-421230V	195 2533 VAC
STR-42124V	$24 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1/AC-3)	$8 \mathrm{~A} / 2 \mathrm{~A}$
control	
STR-421230V	triggered with L or N level
STR-42124V	triggered with + level
control pulse current	$<1 \mathrm{~mA}$
switch-on time (adjustable)	$0 \mathrm{~s} \div 10 \mathrm{~min}$.
power/programming indication	LED green
power indication	$2 \times$ LED red
power consumption	<1W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

One-button: 1 common local control buttons "Up" and "Down"

Functioning

- Local control

Button controlling one roller shutter: \uparrow - up (opening); \downarrow - down (closing). Pressing the local button switches on the roller blind in the direction opposite to the last one. If the roller shutter is already in motion, pressing the local control button will stop the roller blind. Press the local button again to move the roller shutter in the opposite direction.

- Central control

A group of buttons common to many controllers (at least two) connected to terminals 7 and 8, controlling all roller shutters in the central control system: $\uparrow \uparrow-$ all up; $\downarrow \downarrow$ - all down. Pressing the local button switches on the roller shutter for movement in a selected direction. If one of the roller blinds is already moving in the same direction, then the movement will be continued. If it moves in the opposite direction, the roller shutter will be stopped first and then switched on in the direction resulting from the command given to the central input.

The central control system allows the roller shutters to be switched on for movement only in the selected direction.
The roller shutter will stop only after the programmed time has elapsed or after any local control button has been pressed.

STR-2
 modernization

A classic solution with a new insides. Streamlined design reduces power consumption and increases device durability.

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1/AC-3)	$8 \mathrm{~A} / 1.5 \mathrm{~A}$
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
switch-on time (adjustable)	$0 \mathrm{~s} \div 10 \mathrm{~min}$.
power/programming indication	LED green
power consumption	<1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
signal terminal	$4 \times$ DY $1 \mathrm{~mm}^{2}$, $\mathrm{l}=10 \mathrm{~cm}$
supply terminal	$2 \times$ DY $1.5 \mathrm{~mm}^{2}, \mathrm{l}=10 \mathrm{~cm}$
dimensions	$\phi 55, \mathrm{~h}=20 \mathrm{~mm}$
mounting	in flush mounted box $\varnothing 60$
ingress protection	IP20

STR-22

STR-422

power supply	
STR-422 230V	195 $\div 253 \mathrm{VAC}$
STR-422 24V	$24 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1/AC-3)	$8 \mathrm{~A} / 1.5 \mathrm{~A}$
control	
STR-422 230V	triggered with L or N level
STR-422 24V	triggered with + level
control pulse current	$<1 \mathrm{~mA}$
switch-on time (adjustable)	$0 \mathrm{~s} \div 10 \mathrm{~min}$.
power/programming indication	LED green
power indication	$2 \times$ LED red
power consumption	<1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Fox-Wi-Fi control system

System characteristic

- Communication over home Wi-Fi network;
- Remote access to devices from anywhere in the world via the Polish F\&F cloud;
- Ability to work autonomously even without a Wi-Fi connection
- Advanced programmable timers based on online calendars (such as Google, Outlook) and enhanced with astronomical functions;
- Easy to use, free mobile app for Android and iOS phones and tablets;
- Works with Google voice assistant;
- Fully Polish software focused on security and user privacy protection;
- Secured device access and sharing capabilities with a password system;
- No hidden operating costs;
- A guarantee of long-term product support backed by F\&F's 30-year history;

- Ability to integrate with external loT systems using REST APIs.

power supply	$85 \div 265$ VAC
control input	
control voltage	$85 \div 265$ VAC
control pulse current	$<1 \mathrm{~mA}$
maximum load current (AC-1)	16 A
power consumption	
standby	<1.2 W
operation (relay on)	<2 W
communication	
radio frequency	2.4 GHz
transmission	Wi-Fi
radio power	$<13 \mathrm{dBm}$
receiver sensitivity	-98 dBm
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$0 \div 45^{\circ} \mathrm{C}$
humidity (no condensation of steam and	ressive gases) <90\%
dimensions	$\emptyset 54$ (size $48 \times 43 \mathrm{~mm}$), $\mathrm{h}=20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

Functions

- 1-channel 230 V relay with up to 16 A [AC-1]* load capacity and separated NO output contact;
- Possibility of connecting a local control button and setting its function;
- Receiver control via mobile app and timers;
- Built-in clock with power backup and own copy of the operating programme, guaranteeing correct functioning also without Wi-Fi connection;
- REST API support to integrate the controller also into other home automation systems;
- Built-in thermal protection;
- Convenient mounting in an installation box with a diameter of 60 mm .
* The maximum load capacity depends on the temperature and operating conditions of the unit. Prolonged operation at high load may lead to tripping of the thermal protection and disconnection of the controlled circuits.

Switch\&Energy

power supply	$85 \div 265 \mathrm{VAC}$
control input	
control voltage	$85 \div 265$ VAC
control pulse current	$<1 \mathrm{~mA}$
maximum load current (AC-1)	
rated current	10A
maximum current (instantaneous)	16A
power consumption	
standby	<1.2 W
operation (relay on)	<2 W
communication	
radio frequency	2.4 GHz
transmission	Wi-Fi
radio power	$<13 \mathrm{dBm}$
receiver sensitivity	-98 dBm
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$0 \div 45^{\circ} \mathrm{C}$
(no condensation of steam and aggressive gases)	
dimensions \emptyset	¢54 (size $48 \times 43 \mathrm{~mm}$), h= 20 mm
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

Functions

- 1-channel 230 V relay with 10 A rated capacity and $16 \mathrm{~A}^{*}$ maximum capacity;
- Ability to connect local control buttons and set its function;
- Monitoring of network parameters: voltage, current, power (active and reactive), energy (active and reactive);
- Power limitation can be set, also in connection with time programmers;
- Built-in clock with power backup and backup copy of the work program guarantees proper operation also without a Wi-Fi connection;
- Built-in thermal protection;
- Mounting in an installation box with a diameter of 60 mm .

[^3]
Double Switch

Functions

- Two-channel 230 V relay with rated load capacity of 5 A and maximum of 8 A* per channel;
- Ability to connect local control buttons and set their function;
- Built-in clock with power backup and a backup copy of the operating program guarantees proper operation of a relay even without a Wi-Fi connection;
- Built-in thermal protection;
- Mounting in an installation box with a diameter of 60 mm .
* Ability to operate above the rated load depends on the temperature and operating conditions

Shutter 230 V roller shutter controller, Wi-STR1S2-P

Functions

- Control of a single roller shutter with a 230 V motor with a load capacity of up to 320 W ;
- One or two buttons for local control of the roller shutter can be connected;
- Ability to control the pitch of the slats;
- Set the desired level of roller shutter opening and slat tilt using the mobile app and time programmers;
- Electric protection of the roller shutter motor;
- Built-in clock with power backup and a backup copy of the operating program guarantees proper operation of a relay even without a Wi-Fi connection;
- Built-in thermal protection;
- Mounting in an installation box with a diameter of 60 mm .

power supply	$9 \div 30 \mathrm{VDC}$
control inputs	2
control voltage	$9 \div 30 \mathrm{VDC}$
control pulse current	<3mA
control outputs	
type	open collector
maximum load current (AC-1)	$<20 \mathrm{~mA}$
voltage	40 V
power consumption	
standby	<1.2 W
operation (output on)	<1.5 W
communication	
radio frequency	2.4 GHz
transmission	Wi-Fi
radio power	$<13 \mathrm{dBm}$
receiver sensitivity	$-98 \mathrm{dBm}$
terminal	$0.14 \div 0.5 \mathrm{~mm}^{2}$ spring terminals
working temperature	$-20 \div 55^{\circ} \mathrm{C}$
dimensions	
without antenna	$42 \times 89 \times 31 \mathrm{~mm}$
antenna length/working part	$1 \mathrm{~m} / 25 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP65

Functions

- Designed for integration with any gate drive system;
- Ability to control one or two gates or a gate and a wicket;
- Local inputs for connecting gate open/close sensors or designed for local opening of the gate/wicket;
- External antenna for extended operating range;
- Hermetic housing suitable for outdoor installation;
- Available in orange (Wi-Gate) or grey (Wi-Gate-G).

Dimmer

Functions

- Brightness control of 230 V light sources, including dimmable LED lighting;
- Ability to connect a local button to switch the light on and off and to control the brightness;
- Setting a given brightness level using the mobile application and time programmers;
- Built-in clock with power backup and a backup copy of the operating program guarantees proper operation of a relay even without a Wi-Fi connection;
- Built-in thermal protection;
- Mounting in an installation box with a diameter of 60 mm .

Functions

- Dual-channel $12 / 24$ V LED lighting controller with load capacity of up to 4 A* per channel;
- Ability to connect a two local button to switch the light on and off and to control the brightness;
- Setting a given brightness level using the mobile application and time programmers;
- Built-in clock with power backup and a backup copy of the operating program guarantees proper operation of a relay even without a Wi-Fi connection;
- Built-in thermal protection;
- Mounting in an installation box with a diameter of 60 mm .
* The load capacity can be increased using additional amplifiers LED-AMP-1P or LED-AMP-1D (see p. 50)

Color LED

color LED controller, Wi-RGBW-P

Functions

- 12/24 V color LED RGBW lighting controller with load capacity of up to 4 A* per color;
- Operation in color or white color temperature control mode;
- Ability to connect two local buttons:
- First to switch the light on and off and to control the brightness;
- The second for smooth color changes and switching between preset colors.
- Setting a given brightness and level using the mobile application and time programmers;
- Built-in clock with power backup and a backup copy of the operating program guarantees proper operation of a relay even without a $\mathrm{Wi}-\mathrm{Fi}$ connection;
- Built-in thermal protection;
- Mounting in an installation box with a diameter of 60 mm .

[^4]
The standard of the future in your home

Purpose

F\&Home is a system dedicated to flats, single-family houses and commercial premises.
The system provides all the basic functionalities of building automation, such as

- control of the heating, cooling, and ventilation;
- lighting control (dimmers, light scenes, RGB);
- control of roller shutters, gates, and other motor components;
- switching on/off various circuits and receivers (including sockets), outdoor lighting, sprinklers, household appliances;
- remote control through a dedicated application and GSM supervision.

By distributing the functionality into separate subsystems (modules), which individually perform particular functions, you can adjust the system to your needs and financial capabilities.

System characteristics

The F\&Home smart home system integrates independently operating systems into standard solutions. Integration offers new possibilities and simplifies the control of an extensive installation. F\&Home is a wired control system for lighting, roller shutters, heating, air conditioning and other devices powered by any voltage. The communication is carried out via UTP cables converging in switchgear (star system). Due to the specific way of control and location of the cables, the system is dedicated to newly built or thoroughly modernized buildings. An important feature of the system is the free use of accessories. You can use buttons, switches, and sockets of any manufacturer.

Central unit

The central element of the system is a computer with a 12 " touch panel. It is mounted outside the switchboard in the wall using a steel mounting casing. The computer is powered from 230 V mains and requires a separate connection with the main switchgear. The module communicates with the system via the CAN bus. It is possible to set the color of the screen menu and upload your own favourite graphics and photos as screen savers. If the customer would like to base the control of the system only on mobile devices (tablets, phones) there is a possibility to use a central unit mounted on a DIN rail called mH -DEVELOPER. The the installation of the touch panel is not required, and the entire configuration and control of the system is carried out from mobile devices. The description of the module can be found in the section: Smart Home for developers.

Functions

- Pre-programming (arrangement of elements on the plan of the building);
- Programming of the dimmer settings (hysteresis);
- Setting the device programmers (in an annual cycle with 1-minute increments);
- Setting the heating and cooling programmers;
- Setting the times of motor devices (roller shutter, blinds, awnings);
- Scene definition (can include light, roller shutters, temperature, switching on of selected receivers);
- Setting the color of the interface (adjustment to individual needs);
- Uploading photos to the screen saver (electronic photo frame);
- Configuration of the GSM module;
- Software updates (using a flash drive).

Taking into account the aesthetics of the interior, the customer can choose an aluminium masking frame, lacquered in a chosen color. Easy installation of the frame and a wide color palette guarantee that the system can be adjusted to any interior.

The clear and intuitive menu structure allows you to centrally control all devices in the entire system. An attractive visualization is an additional decorative element. It is possible to set the color of the screen menu and upload your own favourite graphics and photos as screen savers. The basic visualization of the premises in a house or apartment - based on plans provided by the client - is performed by our graphic designers.

Example of a user interface on a control panel

GSM and Wi-Fi remote

The GSM functions allow you to remotely control the system with ease via SMS text messages. By sending a special text message we can switch on/ off any receiver in the building, check if the indicated circuit is switched on, read the room temperature or run a specific scene (such as raising a room temperature, opening the door, illuminating the driveway, etc.).
Any phone or tablet with Android or iOS and F\&Home Mobile application for controlling the system via Wi-Fi or the Internet can be used as a powerful home remote control. The application allows you to control devices and defined scenes.

Switchgear, accessories and

The system operates in a star system, which means that all the control and power wires of the individual receivers converge in the switchgear. Due to a large number of cables, large switchgear (96 modules and more) or standalone switchgear cabinet must be used. It is also acceptable to use two switchgears, for example on the ground floor and on the first floor of the building.
In this case, a CAN bus line must be routed between the switchgears. The system requires a large number of cables, so the installation should be carried out before the plastering. At the installation stage, it is necessary to cooperate with plaster workers (installation of switchgears and computer housings) and plumbers (control of solenoid valves). The central point of the system is the switchgear and all wires (star system) are connected to it. The signal from the control buttons of the switch-on/off devices (lighting, sockets, and other devices) should be brought to the switchgear via UTP cable. Any type of equipment (buttons, switches, sockets) available on the market can be used to control the system.

Installation cost and savings
Building a smart installation certainly means a higher initial cost. However, the economic effect is not only determined by the one-time cost incurred during the investment but above all by the subsequent costs of maintenance and operation. When deciding on an F\&Home installation, we must be aware that it is an investment in the future. With time, we will save on the costs associated with heating, lighting, and operation of TV equipment. The highest initial cost is the purchase of system components. The cost of building a wired F\&Home installation only slightly exceeds the cost of standard wiring - the work of installers/electricians is comparable to the installation of a computer system or alarm system. The total cost of the system is 2 or 3 times lower than other known systems of this type.
The integration of central heating into the F\&Home system reduces heating costs by up to 30%.
This effect is achieved thanks to the ability to control the valves of central heating circuits and individual temperature control programs depending on the time of day and the presence and activity of the household members. There are also clear savings (up to 15%) achieved by controlling the lighting depending on place and time, for example by adjusting the lighting intensity to the time of day.
Additional savings can be achieved by properly controlling other receivers, such as consumer electronics, when while leaving the house we use the "Switch off all" function, which disables even the receivers already in stand-by.

System installation

The F\&Home system may only be installed by a qualified installer who has received training in the field of installation, operation, and configuration of the system.
In case of installation by an independent or unauthorized installer, the F\&F company may refuse to provide free technical support and terminate the warranty conditions for the components and installation of the system.
The authorized installer holds an individual card with his name, surname and authorization number.

System elements

Type	Description
$\mathrm{mH}-\mathrm{IO} 32$	Input/output module controlling 28 on/off devices
$\mathrm{mH}-\mathrm{IO} 12 \mathrm{E} 6$	Mixed module, controlling 12 on/off devices and 6 motorized devices
$\mathrm{mH}-\mathrm{E} 16$	Motor module, controlling 16 motor devices such as roller shutters, awnings, gates, roof windows
$\mathrm{mH}-\mathrm{L} 4$	4-channel actuator module for dimmers ($4 \times 350 \mathrm{~W}$)
$\mathrm{mH}-\mathrm{S} 4$	4-channel sensor module (sensors included)
$\mathrm{mH}-\mathrm{S8}$	8-channel sensor module (sensors included)
$\mathrm{mH}-\mathrm{V} 4$	4-channel valve actuator module (actuator element: semiconductor)
$\mathrm{mH}-\mathrm{V} 8$	8-channel valve actuator module (actuator element: semiconductor)
mH-V7+	7-channel valve actuator module + CO pump or furnace control
$\mathrm{mH}-\mathrm{R} 2 \times 16$	Relay module (2 pcs. 16 A)
$\mathrm{mH}-\mathrm{R8} / 2$	Relay module (8 pcs. 8 A)
mH -RE4	Roller shutter relay module
$\mathrm{mH}-\mathrm{SP}$	Interference filter module with overvoltage protection module
$\mathrm{mH}-\mathrm{SU} 50$	Power supply unit
$\mathrm{mH}-\mathrm{Mrg}$	GSM module
mH -TS12	12 " computer with touch panel
mH-RGB	LED RGB control module
mH-LED	12 V LED lighting control module
mH-MS	Scene module (16 inputs). It allows you to trigger scenes using the buttons
$\mathrm{mH}-\mathrm{MK}$	Signal light module (16 inputs)
mH -SEP	CAN separator module for extended installations

The standard of the future in our home

System characteristics

The F\&Home Radio system is an innovative and comprehensive solution for the designing, installation and remote management of a network of devices constituting equipment or an integral part of a building. By using universal radio-controlled actuators and sensory elements, controlling the operation of individual devices, the system provides wireless integration of previously not connected components of the installation: lighting, heating, air conditioning, ventilation, access control, monitoring, audio-video systems, and garden automation systems.

System architecture

The F\&Home Radio system is based on a central server that controls all its functions. The server is based on a Linux operating system and is characterized by high performance and reliability at a very low power consumption (max 10 W). The server communicates via radio in the 868 MHz band with sensory elements, the so-called "sensors" (such as, among other things, switches, motion detectors, temperature, humidity and other probes) and actuating elements, the so-called "actors" (relays, dimmers, LED control modules, electric motor controllers, pumps, water and heating valves, and other actuators). By using a dual radio that operates simultaneously on two independent channels, the system has a very high resistance to external interference. The range of the radio, which is typically several dozen meters, can be extended by the use of signal amplifiers (repeaters).
Both the sensors and the actors in the F\&Home Radio system are universal. For example, a motion sensor can act as an alarm sensor when the household members are out of the house, and if the alarm is disarmed, it can switch on the light or change the settings of the ventilation system depending on the activity of the household members. Similarly, the power regulator can control the intensity of lighting or the thrust of a bathroom fan. Such an approach means that the available
 range of sensory and actuator elements does not in any way limit the functionality of the system, but on the contrary - it expands it considerably.
Processing of signals in the F\&Home Radio system takes place in real-time (guaranteed response time to any events and their combinations is less than 30 ms). The F\&Home Radio server works with a local network (LAN), which provides communication with a wide range of mobile devices (phones, smartphones, and tablets). With Cloud service, you can control your devices even when you're away from home. The system also has direct support for SMS-based communication via a dedicated USB modem equipped with a SIM card.

Advantages of the wireless system

- Reduction of wired connections;
- Non-invasive installation of radio system components through the use of flush-mounted transmitter modules and controllers, alternative DIN rail modules and battery-powered sensors;
- Guaranteed simple and fast installation of systems in new buildings and modernization of existing installations, without the need for costly and time-consuming renovation work;
- Easy reconfiguration of system elements in case of extension of a house or apartment, as well as in case of increase of user requirements or change of household members' preferences;
- The ability to connect and control the operation of already installed devices without the remote control feature that make up the equipment or an integral part of the building (such as lighting elements, automation of gates and windows, shutter/blinds, radiators, solenoid valves, circulation pumps, lawn irrigation and plants watering systems, etc.);
- A much wider range of flexibility, performance, and functionality in relation to wired solutions with the ability to adapt or fully integrate them.

F\&Home RADIO sensors and actors

[^5]
Autonomous work

The architecture and individual elements of the F\&Home Radio system have been designed so as not only to allow the user to remotely control the operation of individual components, but above all, wherever possible, to relieve him from such a necessity by means of autonomous management and intelligent control of the operation of devices. Depending on the type and configuration of the installed, automated equipment of a given building, the system can control its operation after recognizing the specific activity of the household members, for example: the user sleeps, wakes up, leaves the house, stays out, returns home, enters, stays at home, goes to sleep - or other types of events such as visit of guests, watching a movie, a party, a barbecue in the garden, etc.
Below is an example of autonomous function execution for one of the exemplary activities.
The user approaches home - the system identifies the activity (for example: the GPS location, SMS message sent by the user) and automatically:

- Adjusts temperatures (warms or cools selected rooms or zones) to the preferred values;
- Raises the roller shutters to the desired position (according to the user's settings);
- Switches on the lighting in the selected rooms or zones (such as a driveway, garden, garage) and also adjusts its intensity to external conditions (time of day, weather conditions, personal preferences);
- Ventilates the selected room (opens the windows or switches on the ventilation system), taking into account the information from the sensors (for example, the detection of precipitation, wind strength and direction);
- Starts the hot water circulation in advance of the planned return time (starts the circulation pump)
- Sets the blinds and curtains in the preferred positions, taking into account the information from the sensors (such as temperature control, angle of sunlight);
- Prepares audio-video systems for multimedia playback in selected zones or rooms;
- Starts up, controls the operation or prepares other devices for the desired work.

Configuration tools for installers

An integral part of the F\&Home Radio system is a support tool in the form of configuration software, dedicated mainly for installers, architects, developers, industry engineers, but also for hobby users. The software provides a unique solution for designing and building a smart home installation, as well as for configuring and managing building automation servers based on F\&Home RADIO technology. Thanks to a virtual representation of physical sensory and actuator elements and the extensive library of software objects, realizing the logic of interaction between these elements, it is possible to freely create virtually any configuration of scenarios of operation of individual devices, installations and entire systems.
Other advantages of such a solution include:

- Faster and easier work for the installer;
- Ability to perform most of the configuration work off-site;
- Simplification and minimization of installation work at the customer's site;
- Quick copying of installation projects for a larger number of similar objects (multi-family buildings, semi-detached houses, single-family housing estates);
- Easy reconfiguration of the installation in case of system expansion or changes in user preferences.

Example of system functionality for selected installations

Lighting:

- Free configuration of light points, installation locations of physical switches, functions and the appearance of control panels of mobile applications;
- Remote control of time and intensity of illumination of individual points, separated sections, and entire circuits;
- Any color compositions for RGB LED lighting;
- Composition of different light scenes defined by the user according to his preferences;
- Sequential operation (such as the control of different light scenes using only one switch);
- Free combination of light scenes with other systems operation within defined scenarios (such as integration with audio-video systems);
- Smart operation depending on the time of day and night, presence detection, traffic intensity and other events (such as gradual illumination of rooms in night mode);
- Configuration of lighting in such a way as to simulate the presence of household members in the home during their actual absence.

Heating, air conditioning, ventilation:

- Direct or indirect control of heating system components (using furnace controllers, electric valves, circulation pumps, ventilation systems, etc.);
- The use of temperature sensors built into the system components;
- The local temperature and ventilation management in individual rooms or zones;
- Remote control of temperature and operation of ventilation devices in selected places;
- Free definition of operating mode scenarios for specific activities (such as summer mode, winter mode, holiday mode, short absence, return home, etc.);
- Configuration the operating modes to suit each user's preferences;
- Smart operation depending on the time of day and night, the activity of the household members and other events (such as adjusting the temperature to the presence and intensity of traffic in a given room);
- Synchronization of operation with Internet services;
- Control and remote control via SMS gateway (for example: remote management of the heating system in holiday homes without Ethernet network).

Application

The F\&Home RADIO 2 application allows you to control intelligent installations (even several) by switching between the servers. Control can take place locally - in the Wi-Fi network where the server is located, or remotely, from anywhere in the world via F\&F's proprietary cloud. You can download the app from the Google Play or AppStore and pair it with your F\&Home RADIO smart building installation.
Thanks to the customization feature, each user can configure the appearance of the application according to their preferences and the permissions granted by the administrator. This means that individual users only have access within the installation to those devices to which the administrator has granted access.
The number of icons, their location and color can be freely selected (on each device independently).
For those who want to have the same look on all mobile devices, there is an option to import/export the configuration so that you don't have to set all the parameters on each device separately.
The application allows you to control:

- lighting (including dimmable, LED and RGB);
- socket circuits and everyday appliances;
- roller blinds, shutters and awnings;
- gates, wickets, doors;
- heating (regardless of the heating source);
- air conditioning and ventilation;
- home electronics;
- watering and garden architecture equipment;
- energy consumption, flooding of premises;
- the integration of the system with other systems (for example with alarm or access control systems).

F\&Home RADIO app screens

Type	Description
rH-D1S2	1-channel flush-mounted dimmer module with 2-channel transmitter
rH-D2S2	2-channel DIN dimmer module with 2-channel transmitter
rH-PWM3	3-channel flush-mounted module of the LED RGB low voltage PWM controller
rH-PWM2S2	2-channel flush-mounted module of the low voltage PWM controller with 2-channel transmitter
rH-TSR1S2	2-way flush-mounted relay module with 2-channel transmitter
rH-TSR1S2 DIN	2-way DIN relay module with 2-channel transmitter
rH-R1S1	1-channel flush-mounted relay module with 1-channel transmitter
rH-R1S1T1	1-channel flush-mounted relay module with 1-channel transmitter and temperature sensor
rH-R2S2	2-channel flush-mounted relay module with 2-channel transmitter
rH-R2S2 DIN	2-channel DIN relay module with 2-channel transmitter
rH-R3S3	3-channel DIN relay module with 3-channel transmitter
rH-R5	5-channel DIN relay module
rH-S2	2-channel flush-mounted transmitter module
rH-S4T	4-channel flush-mounted transmitter module with temperature probe
rH-S4Tes	4-channel flush-mounted transmitter module (with external temperature probe), battery-powered
rH-S4TesAC	4-channel flush-mounted transmitter module (with external temperature probe), mains-powered
rH-T1X1	Temperature sensor and light intensity (sunlight) sensor module
rH-T1X1es	Temperature sensor and light intensity (sunlight) sensor module, battery-powered
rH-T1X1es AC	Temperature sensor and light intensity (sunlight) sensor module for DIN rail
rH-S6	6 -channel DIN transmitter module
rH-T6	6-channel temperature sensor module
rH-P1	Low-current passive motion detector module
rH-P1T1	Low-current passive motion detector module with temperature probe
rH-E2	2-channel signal amplifier module
rH-IR16	Infrared remote control module
rH-RC10	10-button remote control (black/white)
rH-AC15S4R4	Module for cooperation with an alarm panel
rH-EQ3HUB	Module for integration with thermostatic heads
rH-SERWER	Control and management server of the system
rH-SERWER DIN 2	Control and management server of the system mounted on DIN rail
rH-S4L4-B/W-230	4-channel 230 V glass connector (black/white)
rH-S4L4-B/W-24	4-channel 24 V glass connector (black/white)
rH-WMC	Door/window reed relay, battery-powered
rH-S1L1-230-W	Single transmitter integrated with a white glass panel, 230 V power supply
rH-S2L2-230-W	Double transmitter integrated with a white glass panel, 230 V power supply
rH-S4L4-230-W	Quadruple transmitter integrated with a white glass panel, 230 V power supply
rH-S1L1-24-W	Single transmitter integrated with a white glass panel, 24 V power supply
rH-S2L2-24-W	Double transmitter integrated with a white glass panel, 24 V power supply
rH-S4L4-24-W	Quadruple transmitter integrated with a white glass panel, 24 V power supply
rH-S1L1-230-B	Single transmitter integrated with a black glass panel, 230 V power supply
rH-S2L2-230-B	Double transmitter integrated with a black glass panel, 230 V power supply
rH-S4L4-230-B	Quadruple transmitter integrated with a black glass panel, 230 V power supply
rH-S1L1-24-B	Single transmitter integrated with a black glass panel, 24 V power supply
rH-S2L2-24-B	Double transmitter integrated with a black glass panel, 24 V power supply
rH-S4L4-24-B	Quadruple transmitter integrated with a black glass panel, 24 V power supply

Glass touch buttons designed for the F\&Home RADIO system

rH-S4L4-24-B/rH-S4L4-230-B

touch button, black

rH-S4L4-24-W/rH-S4L4-230-W

touch button, white

power supply	
rH-S4L4-24-B/rH-S4L4-24-B	$9 \div 30 \mathrm{VDC}$
rH-S4L4-230-B/rH-S4L4-230-W	$85 \div 265$ V AC
power consumption	
standby	0.25 W
on	0.6 W
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$81 \times 81 \times 12 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	
front	IP50
back	IP10

Smart Home for developers

Purpose

The mH-Developer system is designed for controlling heating, lighting and electrical sockets in the installations of houses and flats. The main module is a standalone unit that has been developed based on a detailed analysis of customer needs and in collaboration with developers. Additionally, the basic module can be extended with other functionalities (control of roller shutters, gates, RGB lighting, garden watering) by using extension modules from the F\&Home system. The main module, as well as the extension elements, are mounted in the switchgear. The system does not require the installation of additional devices under the buttons - therefore it does not require the use of deepened boxes.
The whole system is characterized by simple installation, compact design and a functional mobile application that allows you to configure and control the elements of the system.

Functions

- Heating control (8 zones);
- An external temperature sensor can be connected;
- Control of lighting and electrical outlets (12 circuits);
- Control of water, gas and other media valves;
- Electricity meter (indicating total and instantaneous energy consumption).

Module extensions

- Control of dimmable light sources;
- LED and LED RGB lighting control;
- Control of roller shutters, awnings, electric curtains.

Program functionalities

- Configuration of individual devices;
- Scenarios (device grouping);
- Time programming of devices (programmers);
- Preview of images from IP cameras;
- Control via mobile applications for Android and iOS;
- Remote control via the cloud.

power supply	$20 \div 26 \mathrm{VDC}$
maximum current consumption	0.5 A
number of inputs	
on/off	12
temperature	9
number of outputs	
on/off	12
valves	8
load capacity of the on/off outputs (AC-1)	16 A
load capacity of valve outputs (AC-1)	0.5 A
CAN interface	YES (F\&Home)
Modbus interface	YES (Modbus RTU)
LAN interface	YES (10/100 Mbps)
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	12 modules (212 mm)
mounting	for TH-35 rail
ingress protection	IP20

Application

An integral part of the system is a mobile application for configuring and controlling devices connected to the mH-DEVELOPER module.
The application can be personalized - each user can have his own configuration (so that, for example, children do not need to control all of the devices).
Connection with the module is carried out automatically - when we are at home we connect locally (via WIFI) while being away from home, the application switches to cloud-based control.
It is possible to prepare an individual graphic design of the application for a specific investment. The name of the application, logo, and colors may be changed.

Mobile application: management of devices
in individual rooms

Mobile application: heating management

Mobile application: Weather forecast

Mobile application: lighting management

Section III

 Remote controlChapter 14
F\&Wave - radio control system 76
Chapter 15
RS - radio control system 88
Chapter 16
Proxi - bluetooth smart remote control system 90
Chapter 17
Remote control GSM 93

Purpose

The F\&Wave wireless radio control system is designed for direct control of electrical devices in houses and flats. The system consists of dedicated transmitters and receivers. It is possible to pair multiple transmitters with a single receiver and a single transmitter with multiple receivers.

System features

- Control of different receivers in one system: 1- and 2-channel relays, 230 V dimmers, LED dimmers, roller shutter controllers;
- The receivers are designed to be mounted in $\varnothing 60$ flush-mounted box or on a DIN rail;
- Transmitters in the form of 4 - and 10-button remote controls, battery wall-mounted push buttons, transmitters for installation in a $\varnothing 60$ flush-mounted box that can be used with any instantaneous (monostable) button and glass touch buttons;
- Central control feature, which means that multiple receivers can be activated in switch everything off/on or raise/lower everything function using just one button;
- Each receiver can be paired with 32 transmitters (multifunctional controllers) or 8 receivers (single-function controllers);
- Data retransmission by receivers - the range of operation can be increased;
- Operating range up to 100 m (in the open air with no interfering factors present). In a built-up area and if the interference sources are present (power lines, GSM transmitters, various machines, etc.), the actual range may be smaller. The range can be improved by direct retransmission of the modules in each other's range;
- Low power consumption (extends the battery life of the transmitters and reduces operating costs);
- Thermal protection of the devices increases safety and reduces failure rates in the event of overload or malfunction.

ON/OFF relays

Purpose
The relay group is used for direct control of the connected receiver in the ON/OFF (switch on/off) function. Pressing a wall switch or paired radio transmitter button directly connected to the relay changes the position of the contact to the opposite one.
Central control feature, which means that multiple receivers can be switched on or off using just one button of the radio transmitter. With multifunction devices (devices with index -P) it is also possible to set the time functions, the mono/bistable operating mode and the always on/off function.

FW-R1P
single bistable relay

power supply	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
power consumption	
standby	0.25 W
on	0.6 W
output load (AC-1)	$8 \mathrm{~A} / 250 \mathrm{~V}$
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$43 \times 48 \times 20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

FW-R1P-P
single multifunctional relay

FW-R1D

single bistable relay

FW-R1D-P
single multifunctional relay

- 1-channel multifunctional relay:
- bistable (ON/OFF);
- monostable (pulse);
- time (from 1 s to 48 hours);
- always on (ON);
- always off (OFF);
- Each button/transmitter (local and re-
mote) can perform a different function;
- Possibility of connecting the relay with

32 transmitters;

- Separated output contact.

power supply	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$
control	triggered with L or N level
control pulse current	<1mA
power consumption	
standby	0.25 W
on	0.6 W
output load (AC-1)	$16 \mathrm{~A} / 250 \mathrm{~V}$
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

power supply	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
power consumption	
standby	0.25 W
on (2 relays)	1 W
output load (AC-1)	$2 \times 8 \mathrm{~A} / 250 \mathrm{~V}$
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$43 \times 48 \times 20 \mathrm{~mm}$
mounting	in-flush mounted box $\emptyset 60$
ingress protection	IP20

FW-R2P-P

double multifunctional relay

- 2-channel multifunctional relay:
- bistable (ON/OFF);
- monostable (pulse);
- time (from 1 s to 48 hours);
- always on (ON);
- always off (OFF);
- Each button/transmitter (local and remote) can perform a different function;
- Possibility of connecting the relay with 32 transmitters.

power supply control control pulse current power consumption standby	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$ on (2 relays)
triggered with Lor N level output load (AC-1) $<1 \mathrm{~mA}$	
radio frequency	0.25 W
working temperature	1 W
terminal	$2 \times 8 \mathrm{~A} / 250 \mathrm{~V}$
tightening torque	868 MHz
dimensions	$-25 \div 50^{\circ} \mathrm{C}$
mounting	
ingress protection	$2.5 \mathrm{~mm}^{2}$ screw terminals

FW-R2D

double bistable relay

FW-R2D-P
double multifunctional relay

- 2-channel multifunctional relay:
- bistable (ON/OFF);
- monostable (pulse);
- time (from 1 s to 48 hours);
- always on (ON);
- always off (OFF);
- Each button/transmitter (local and remote) can perform a different function; - Possibility of connecting the relay with 32 transmitters;
- 2 independent output contacts.

power supply
control
control pulse current
power consumption
standby
on (2 relays)
output load (AC-1)
radio frequency
working temperature
terminal
tightening torque
dimensions
mounting
ingress protection

$85 \div 265$ VAC/DC triggered with L or N level $<1 \mathrm{~mA}$
dimensions
ingress protection

Multifunction relays without neutral wire

Purpose

The relay group is used for direct control of the connected receiver in the bistable (ON/OFF), monostable (pulse) or time function. Pressing a wall switch or paired radio transmitter button directly connected to the relay triggers the relay. The central control feature means that multiple receivers can be switched on or off using one radio transmitter. The NN series devices are adapted to operation in boxes without neutral cable but equipped only with the "L" wire and the wire connected to the bulb (installation with intermediate boxes).

FW-R1P-NN

single multifunctional relay, suitable for operation without a neutral wire in the switch box

- The power supply in standard

2-wire installation (no neutral wire
in the switch box);

- 1-channel multifunctional bistable relay:
- bistable (ON/OFF);
- monostable (pulse);
- time (from 1 s to 48 hours);
- always on (ON);
- always off (OFF);

Each button/transmitter (local and remote) can perform a different function;
Possibility of connecting the relay with 32 transmitters.

power supply	$195 \div 265 \mathrm{VAC}$
control	triggered with L level
power consumption	0.1 W
output load (AC-1)	$1000 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC}$
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$49 \times 49 \times 20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

FW-R2P-NN

double multifunctional relay, suitable for operation without a neutral wire in the switch box

- The power supply in standard

2-wire installation (no neutral wire in the switch box)

- 2-channel multifunctional bistable relay:
- bistable (ON/OFF);
- monostable (pulse);
- time (from 1 s to 48 hours);
- always on (ON);
- always off (OFF);
- Each button/transmitter (local and remote) can perform a different function;
- Possibility of connecting the relay with 32 transmitters.

power supply	$195 \div 265 \mathrm{VAC}$
control	triggered with L level
power consumption	0.1 W
outputs load capacity (AC-1)	
single channel	1000 W/250 V AC
total (2 channels)	1000 W/250 V AC
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$49 \times 49 \times 20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

FW-BYPASS-NN

for use with FW-...-NN series multifunction relays

Purpose

The device is designed to eliminate the effect of the soft illumination of the LED bulbs when the relay is switched off. It is mounted at the light fixture parallel to the controlled bulb. It is designed to work only with FW-...-NN series devices. It is used only when working with an older type of LED lamp.

power supply	$195 \div 265 \mathrm{VAC}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2 \times \mathrm{LY} 0.75 \mathrm{~mm}^{2}$
dimensions	$12 \times 26 \times 11.5 \mathrm{~mm}$
ingress protection	IP20

Roller shutter controllers

A group of roller shutter receivers is used for direct control of connected roller shutter drives as a function of "up/down/stop". Pressing the wall switch directly connected to the relay (local control) or the paired radio transmitter button (remote control: remote control, battery wall switch, flush-mounted transmitter or glass switch) causes the blinds to move in the desired direction. Pressing the button again while the roller shutter is moving stops it in its current position.
The central control feature means that multiple receivers can be switched on or off using one radio transmitter.

FW-STR1P 230 V/150 W roller shutter controller

230 V drive controller;

- 2-button local and remote control;
- Lock feature to prevent the power supply to both motor windings from being switched on;
The relay can be connected with 8 transmitters.

power supply	85 $\div 265 \mathrm{VAC} / \mathrm{DC}$
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
power consumption	
standby	0.25 W
on	1 W
output load (AC-1/ AC-3)	$3 \mathrm{~A} / 0.6 \mathrm{~A}$
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$43 \times 48 \times 25 \mathrm{~mm}$
mounting	in flush-mounted box $\emptyset 60$
ingress protection	IP20

FW-STR1P-P

$230 \mathrm{~V} / 150 \mathrm{~W}$ multifunctional roller shutter controller

FW-STR1D
$230 \mathrm{~V} / 350 \mathrm{~W}$ roller shutter controller

FW-STR1D-P 230 V/350 W multifunctional roller shutter controller

- 230 V drive controller;
- Local and remote control:
- 1-button;
- 2-button;
-2-button central
- Lock feature to prevent the power supply to both motor windings from being switched on;
- Each button/transmitter (local and remote) can perform a different function;
- Possibility of connecting the relay with 32 transmitters.

power supply	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$
control	triggered with L or N level
control pulse current	<1mA
power consumption	
standby	0.25 W
on	1 W
output load (AC-1/ AC-3)	$8 \mathrm{~A} / 1.5 \mathrm{~A}$
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Dimmers

Purpose
The group of dimmers is used for direct control of the connected light sources as a function of „Switch on/Switch off/Brightness level". Pressing the wall switch directly connected to the relay (local control) or the paired radio transmitter button (remote control: remote control, battery wall switch, flush-mounted transmitter or glass switch) switches the lighting on/off to the last set brightness level. A long press of the button (more than 1 second) increases/decreases the brightness level with a 10% increment. Each subsequent brightness setting is opposite to the previous one (brighter -> darker -> brighter -> ...).
The central control feature means that multiple dimmers can be switched on or off using one transmitter button.
Due to the different design solutions used in electronic light sources such as LED bulbs, ESL bulbs, transformers, there is a possibility
(!)
of improper operation of the dimmer in combination with such receivers. Before the final assembly, check that the dimmer and the selected light source are working correctly.

FW-D1P 230 V AC universal dimmer (incandescent, ELS, LED)

- 1-channel universal dimmer supports:
- light bulbs;
- halogen lamps;
- ELS fluorescent lamps;
(with dimming feature);
- 230 V LED lamps (with dimming feature);
- Soft start - smooth switching on/off of the lighting;
- Local and remote control;
- Direct control of the dimmer switch with any monostable button (such as bell button);
- The relay can be connected with 8 transmitters.

power supply	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
power consumption	
standby	0.25 W
on	0.4 W
output load (load R, L, C)	180 W
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$48 \times 48 \times 20 \mathrm{~mm}$
mounting	in flush-mounted box $\emptyset 60$
ingress protection	IP20

FW-D1D 230 v AC universal dimmer (incandescent, ELS, LED)

FW-LED2P

2-channel 12 V DC LED controller

- 2-channel 12 V LED dimmer supports: -12 V LED strips (with dimming feature); -12 V LED lamps (with dimming feature);
- Soft start - smooth switching on/off of the lighting;
- Local and remote control;

Direct control of the dimmer switch with any monostable button (such as bell button);

- The relay can be connected with 8 transmitters.

power supply	$10 \div 16 \mathrm{VDC}$
power consumption	
standby	0.25 W
on	0.4 W
output load (AC-1)	$4 \mathrm{~A} / 12 \mathrm{~V}$
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$43 \times 48 \times 20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

- 2-channel 12 V LED dimmer supports: -12 V LED strips (with dimming feature); -12 V LED lamps (with dimming feature);
- Soft start - smooth switching on/off of the lighting;
- Local and remote control;
- Direct control of the dimmer switch with any monostable button (such as bell button);
- The relay can be connected with 8 transmitters.

power supply power consumption standby	$10 \div 16 \mathrm{VDC}$
on	
output load (AC-1)	0.25 W
radio frequency	0.4 W
working temperature	$6 \mathrm{~A} / 12 \mathrm{~V}$
terminal	868 MHz
tightening torque	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$2.5 \mathrm{~mm}^{2}$ screw terminals
mounting	0.4 Nm
ingress protection	1 module $(18 \mathrm{~mm})$

Transmitters

With mains power supply

FW-GS1 1-channel 230 V or 24 V transmitter

Purpose

Single-channel remote control transmitter designed to work with all receivers of the F\&Wave system. Available in 230 V or low $9 \div 30 \mathrm{~V}$ DC version. The mode of the button operation is selected using the knob located on the back of the device. Designed for installation in an installation box with a diameter of 60 mm .

Mode	Button
A	ON
B	ON/OFF
C	ON/OFF
D	OFF

power supply	
FW-GS1-24-W/ FW-GS1-24-B	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
FW-GS1-230-W/ FW-GS1-230-B	$85 \div 265 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
power consumption	
standby	0.25 W
on	0.6 W
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	
glass panel	$81 \times 81 \times 12 \mathrm{~mm}$
built-in	$52 \times 57 \times 15 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

Variants of execution

Product	Button type	Panel	Description
FW-GS1-230-W	single	F\&Wave transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply	
FW-GS1-24-W	single	F\&Wave transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply	
FW-GS1-230-B	single	F\&Wave transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply	
FW-GS1-24-B	single		

Glass panels

FW-GS1-24-W
FW-GS1-230-W
rH-S1L1-24-W
rH-S1L1-230-W

FW-GS2-24-W
FW-GS2-230-W rH-S2L2-24-W rH-S2L2-230-W

FW-GS4-24-W
FW-GS4-230-W
rH-S4L4-24-W
rH-S4L4-230-W

FW-GS1-24-B
FW-GS1-230-B
rH-S1L1-24-B
rH-S1L1-230-B

FW-GS2-24-B
FW-GS4-24-B
FW-GS4-230-B
rH-S4L4-24-B
rH-S4L4-230-B

FW-GS2

Purpose
Dual-channel remote control transmitter designed to work with all receivers of the F\&Wave system. Available in 230 V or low $9 \div 30 \mathrm{~V}$ DC version. The mode of the button operation is selected using the knob located on the back of the device.
Designed for installation in an installation box with a diameter of 60 mm - both as an integrated standalone button and as a component of larger double (GP2) and triple (GP3) glass panels.

Mode	Button 1	Button 2
A	ON/OFF	ON/OFF
B	ON	ON/OFF
C	ON/OFF	OFF
D	ON	OFF

power supply	
FW-GS2-24-W/ FW-GS2-24-B	$9 \div 30 \mathrm{~V} \mathrm{AC/DC}$
FW-GS2-230-W/ FW-GS2-230-B	$85 \div 265 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
power consumption	
standby	0.25 W
on	0.6 W
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	
glass panel	$81 \times 81 \times 12 \mathrm{~mm}$
built-in	$52 \times 57 \times 15 \mathrm{~mm}$
mounting	in flush-mounted box $\emptyset 60$
ingress protection	IP20

FW-GS4 4-channel 230 V or 24 V transmitter

Purpose

Four-channel remote control transmitter designed to work with all receivers of the F\&Wave system. Available in 230 V or low $9 \div 30 \mathrm{~V}$ DC version. The mode of the button operation is selected using the knob located on the back of the device.
Designed for installation in an installation box with a diameter of 60 mm - both as an integrated standalone button and as a component of larger double (GP2) and triple (GP3) glass panels.

Mode	Button 1	Button 2	Button 3	Button 4
A	ON/OFF	ON/OFF	ON/OFF	ON/OFF
B	ON	ON/OFF	ON/OFF	ON/OFF
C	ON/OFF	OFF	ON/OFF	ON/OFF
D	ON	OFF	ON/OFF	ON/OFF

power supply	
FW-GS4-24-W/ FW-GS4-24-B	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
FW-GS4-230-W/ FW-GS4-230-B	$85 \div 265 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
power consumption	
standby	0.25 W
on	0.6 W
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	
glass panel	$81 \times 81 \times 12 \mathrm{~mm}$
built-in	$52 \times 57 \times 15 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

Variants of execution

Product	Button type	Panel	Description
FW-GS4-230-W	quadruple		F\&Wave transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply
FW-GS4-24-W	quadruple		F\&Wave transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply
FW-GS4-230-B	quadruple		F\&Wave transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 230 \mathrm{~V}$ power supply
FW-GS4-24-B	quadruple		F\&Wave transmitter integrated with the glass panel $81 \times 81 \mathrm{~mm}, 24 \mathrm{~V}$ power supply
FW-GS4-230	quadruple	-	Quadruple module for integration with GP2 $(162 \times 81 \mathrm{~mm})$ or GP3 $(243 \times 81 \mathrm{~mm})$ glass panels, 230 V power supply. Requires ordering with GP2 or GP3 glass panel suitable for double buttons. The GP2 and GP3 panel configurator is shown on page 26.
FW-GS4-24	quadruple	-	Quadruple module for integration with GP2 ($162 \times 81 \mathrm{~mm}$) or GP3 $(243 \times 81 \mathrm{~mm})$ glass panels, 24 V power supply. Requires ordering with GP2 or GP3 glass panel suitable for double buttons. The GP2 and GP3 panel configurator is shown on page 26.

FW-RC4-AC
 network remote control transmitter for $\varnothing 60$ flush-mounted box, 230 V power supply with local and central ON/OFF control inputs

Purpose

Remote control transmitter designed to work with all receivers of the F\&Wave system
Local 230 V power supply. The connection of monostable (momentary) buttons is required.
The transmitter has 4 universal inputs, which are designed for SWITCH local control and ON/OFF central control (switch on/off and/or raise/lower the paired receivers). Input functions are assigned according to the selected operating program.

power supply	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
power consumption	
standby	0.25 W
on	0.6 W
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$43 \times 48 \times 20 \mathrm{~mm}$
mounting	in flush-mounted box $\emptyset 60$
ingress protection	IP20

Table showing the behavior of the individual inputs depending on the set operating mode:

Mode	Input			
A	S1	S2	S3	
B	ON	S2	S3	
C	S1	OFF	S3	
D	ON	OFF	S3	

With battery power supply

power supply	3 V
battery	CR 2032
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$32 \times 72 \times 30 \mathrm{~mm}$

(!) Very low power consumption in the standby mode extends battery life.

power supply	3 V
battery	$\mathrm{CR2032}$
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$44 \times 149 \times 44 \mathrm{~mm}$

(!) Very low power consumption in the standby mode extends battery life.

FW-KEY
4-button remote control, keyring

power supply	3 V
battery	CR2032
radio frequency	868 MHz
power consumption	
standby	$0.04 \mu \mathrm{~W}$
on	50 mW
dimensions	$36 \times 59 \mathrm{~mm}$

(!) Very low power consumption in the standby mode extends battery life.

FW-RC5
battery 5-button transmitter for $\varnothing 60$ flush-mounted box, with 3 local and central ON/OFF control inputs

Purpose

Remote control transmitter designed to work with all receivers of the F\&Wave system.
It does not require a 230 V power supply. Very low power consumption in the standby mode extends battery life.
The connection of monostable (momentary) buttons is required. It has 3 local control inputs for any three receivers and 2 ON/OFF central control (switch on/off and/or raise/lower the paired receivers).

power supply	3 V
battery	2032 (lithium)
radio frequency	868 MHz
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$41 \times 46 \times 15 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$

Purpose

The FW-WSO1 is a 1-key, 1-channel transmitter and the FW-WSO2 is a 1-key, 2-channel remote control transmitter belonging to the Sonata equipment family from Ospel and is dedicated to operating with all devices of the F\&Wave system.

power supply	3 V
battery	2032 (lithium)
voltage	3 VDC
power consumption	
button pressed	20 mA
standby	15 nA
battery life	approx. 10 hours of broadcasting (pressed key on the button)
radio frequency	868 MHz
working temperature	$5 \div 50^{\circ} \mathrm{C}$
mounting	in flush-mounted box $\emptyset 60$
dimensions	$84 \times 84 \times 14 \mathrm{~mm}$
ingress protection	IP20

FW-WSO4

Purpose

The FW-WSO4 is a 2-key, 4-channel remote control transmitter belonging to the Sonata equipment family from Ospel and is dedicated to operating with all devices of the F\&Wave system.

power supply	3 V
battery	2032 (lithium)
voltage	3 VDC
power consumption	
button pressed	20 mA
standby	15 nA
battery life	approx. 10 hours of broadcasting (pressed key on the button)
radio frequency	868 MHz
working temperature	$5 \div 50^{\circ} \mathrm{C}$
mounting	in flush-mounted box $\varnothing 60$
dimensions	$84 \times 84 \times 14 \mathrm{~mm}$
ingress protection	IP20

FW-WS1
 1-button

FW-WS2 2-button
FW-WS3 3-button

Button functions

- SWITCH - switch on/switch off locally;
- ON - switch on/raise everything (FW-WS2 and FW-WS3);
- OFF - switch off/lower everything (FW-WS2 and FW-WS3);

Mounting of the button

- Screw to the wall (2 mounting holes);
- Stick to the wall (for example by means of a two-sided adhesive tape);
- Free position of the button.

FW-FS1

Purpose

The FW-FS1 is a wireless sensor designed to detect the presence of water and other conductive liquids. Information about the presence of water is transmitted via radio to F\&Wave* receivers, through which an external alarm can be activated or the water supply shut off. The sensor is additionally equipped with an acoustic signaling device and a high capacity battery that guarantees operation without the need to worry about the power source.

Device characteristics

The FW-FS1 sensors can be used in a "multiple sensor - single receiver" configuration where sensors located throughout the house control a single receiver responsible for shutting off the valve. They can also operate in the "one sensor - many receivers" configuration, in which the sensor sends an alarm to the receiver responsible for shutting off the water and to the second receiver responsible for reporting flooding to the control panel. It is also possible to create a "multiple sensors - multiple receivers" configuration.
The presence of water is signaled by a cyclic radio alarm and an acoustic signal emitted from the device. The built-in buzzer is also used to report low battery levels and to indicate the current status of the device. Entering the configuration mode (pairing the sensor with the receiver) as well as checking the current status is triggered by shaking the sensor - without having to disassemble the housing. One shake will signal the status of the device via the buzzer, two shakes will activate the sensor pairing mode.

* To ensure full functionality it is recommended to use multifunction receivers such as FW-R1D-P, FW-R2D-P, FW-R1P-P, FW-R2P-P, FW-R1P-NN, FW-R2P-NN.

RS - radio control system

Purpose

Electronic radio relays are used for remote control of the gates, roller shutters, lighting, alarm system arming, etc. The RS remote control system consisting of transmitters and receivers enables the control of gates, roller shutters, etc. Multiple transmitters can also cooperate with one receiver and a single transmitter can work with multiple receivers.

Functioning

The pulse triggered by pressing the transmitter button sends a coded signal to the receiver. The transmitter is protected against interruption of transmission after releasing the button. This ensures that even the shortest activation of the function results in the transmission of the full data frame. Data transmission from the transmitter is indicated by a flashing red LED.
The operating range of the system is up to 100 m . The operating range depends on a number of factors, including atmospheric conditions (humidity), terrain characteristics (reflections), receiver and transmitter placement height and all kinds of obstacles, such as walls.

Receivers

Receivers that are suitable for installation in a flush-mounted box. Up to 32 transmitters can be stored in the non-volatile memory of each receiver. The RS-407B and RS-407M receivers work with dedicated RS-P (remote control) and RS-N (flush-mounted) transmitters.

RS-407M

monostable

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	5 A
contact	separated $1 \times$ NO
indication of reception/programming	red LED
contact status indication	green LED
power consumption	0.8 W
terminal	$4 \times$ LY $1 \mathrm{~mm}^{2}, \mathrm{l}=10 \mathrm{~cm}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\emptyset 55, \mathrm{~h}=21 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

(!) Pressing the transmitter button closes contact $X_{1}-X_{2}$ for $1 \div 2$ seconds (pulse).

RS-407B bistable

[^6]

Transmitters

Functioning

The pulse triggered by pressing the transmitter button sends a coded signal to the receiver. The transmitter is protected against interruption of transmission after releasing the button. This ensures that even the shortest activation of the function results in the transmission of the full data frame. Data transmission from the transmitter is indicated by a flashing red LED.
The RS-N and RS-P radio transmitters work with dedicated RS-407M and RS-407B receivers.

RS-N... flush-mounted transmitter

Purpose

Transmitter for installation in a flush-mounted box. It has an autonomous battery power supply, which eliminates the need for power wires at the button mounting location. For control, we can use the monostable (momentary) buttons of any series of electrical installation equipment.

power supply	3 V
battery	2032 (lithium)
frequency	868 MHz
coding	KeeLoq
terminal	LGY $0.5 \mathrm{~mm}^{2}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 52, \mathrm{~h}=11 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$

Installation in a flush mounted box

Channel terminals

RS-P... remote control

Compact remote control in the form of a keyring.

power supply	12 V
battery type	A 23
frequency	868 MHz
coding	KeeLoq
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
colour	black
dimensions	$30 \times 68 \times 14 \mathrm{~mm}$

Proxi-bluetooth smart remote control system

www.getproxi.com
\qquad

Purpose

Proxi is an innovative system for wireless control of electrical devices in homes and apartments. Control is carried out via the Bluetooth Smart communication standard. The system consists of dedicated relays and a free application for smartphones and tablets running Android or iOS (Apple). Installed relays are automatically added to the inventory of application devices and are immediately ready for control.

System features

- Remote control

Control of a wide range of devices without the use of central control panels, controllers, Wi-Fi routers.

- Wireless communication

Two-way transmission of commands, confirmations and other information between the phone and the device.

- Simplicity of installation

Easy connection to existing installations.

- Ease of use

No programming, easy to use application with a friendly interface.

- Security

Encrypted transmission and the ability to manage access rights to devices.

- Notification support

Presentation of device operating status, activities, alerts and diagnostic information.

- Access management

Configuration of devices in public and private mode, sharing devices, protecting privacy.

- The versatility of the control devices

Phones and tablets running iOS version 7 or Android version 4.3 and above+.

buy

connect

download

control

Proxi Plug
 adapter for an electrical outlet (rB-PLUG)

Purpose

Relay module in the form of an adapter for the power supply socket, designed to control the 230 V receiver on a switch on/off basis. The plug is controlled via a mobile application and manually via a button on the housing. The LED placed in the button indicates the operating status and load (the LED color changes depending on the load value).

Proxi Power on/off relay (rB-R2S2)

Purpose

Relay module designed to control any two devices or electrical circuits. Simple installation in a socket box allows the module to be installed without the need for invasive and costly repair work.

power supply	195 2253 VAC
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
outputs	contact $2 \times \mathrm{NO}(4 \mathrm{~A} / 250 \mathrm{~V}$ AC)
bluetooth transmission	
frequency	2.4 GHz
signal power	1 mW
transmission	two-way
coding	AES
range	30 m
power consumption	1 W
working temperature	$0 \div 45^{\circ} \mathrm{C}$
thermal protection	YES
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$\emptyset 54(48 \times 43 \mathrm{~mm}), \mathrm{h}=20 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

Proxi Light lighting dimmer (rB-D152)

Purpose

The module is designed to control the operation of various light sources with smooth regulation of lighting intensity. The module can be mounted in a classic electrical box. It allows you to connect a receiver and one or two switch buttons. Remote control of lighting directly from the phone and using the buttons.

power supply	$195 \div 253 \mathrm{VAC}$ control control pulse current output	triggered with Lor N level
resistive load	$<1 \mathrm{~mA}$	

Proxi Shade

roller shutter controller (rB-TSR1S2)
Purpose
Radio module designed to control drives of roller shutters, blinds, screens, awnings and curtains offered by various manufacturers. The module can be mounted in an electrical box and connected to a 2-key switch (used in traditional solutions) or installed directly at/in the device.

power supply	195 2533 VAC
control	triggered with L or N level
control pulse current	$<1 \mathrm{~mA}$
maximum load current (AC-1/AC-3)	$3 \mathrm{~A} / 0.6 \mathrm{~A}$
bluetooth transmission	
frequency	2.4 GHz
signal power	1 mW
transmission	two-way
coding	AES
range	30 m
power consumption	1 W
working temperature	$0 \div 45^{\circ} \mathrm{C}$
thermal protection	YES
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$\emptyset 54(48 \times 43 \mathrm{~mm}), \mathrm{h}=25 \mathrm{~mm}$
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

Proxi Gate
 gate controller (rB-TO2S2)

Purpose

Radio module designed to control the automation of gates and garage doors from various manufacturers. The module can be installed in the gate controller along with other radio modules. This solution allows you to use all the attributes of the phone to remotely control the opening and closing of the gates. At the same time, it does not affect the possibility of using traditional remote controls.

Terminal	Description	Function
1	PWR + /-	power supply
2	PWR + /-	power supply
3	OUT1 -	OPEN button
4	OUT1 +	OPEN button
5	OUT2 -	CLOSE button
6	OUT2 +	CLOSE button
7	IN1	limit switches
8	IN1	limit switches
9	IN2	limit switches
10	IN2	limit switches

power supply	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
control	universal
control pulse current	<5 mA
outputs	$2 \times$ transistors ($20 \mathrm{~mA} / 50 \mathrm{~V}$ DC)
bluetooth transmission	
frequency	2.4 GHz
signal power	1 mW
transmission	two-way
coding	AES
range	30 m
power consumption	0.4 W
working temperature	$-30 \div 55^{\circ} \mathrm{C}$
thermal protection	YES
terminal	$0.5 \mathrm{~mm}^{2}$ spring terminals
dimensions	$42 \times 98 \times 30 \mathrm{~mm}$
mounting	surface-mounting
ingress protection	IP20

[^7]
Proxi Bulb
 230 V RGBW LED lamp (rB-BULB)

Purpose

Proxi Bulb lamp allows you to freely change the brightness, color, and saturation of light, which brings a unique mood to your home, apartment or office. The lamp can be controlled via the free app on your smartphone or tablet, and thanks to Bluetooth Smart technology you don't need to connect to the Internet. The smart Proxi Bulb lamp is a worthwhile investment, with LED technology for up to 50,000 hours of uninterrupted operation.

supply voltage	$85 \div 265 \mathrm{~V} \mathrm{AC}$
brightness	600 Im
color temperature	$3000 \div 6000 \mathrm{~K}$
CRI	>80
bluetooth transmission	2.4 GHz
frequency	1 mW
signal power	two-way
transmission	AES
coding	30 m
range	9 W
power consumption	0.95
total system power factor	$0 \div 45^{\circ} \mathrm{C}$
working temperature	$\varnothing 65 \times 135 \mathrm{~mm}$
dimensions	E 27 screw base
mounting	

GSM remote control

Remote controls relays

Purpose

Relays with built-in GSM communicator are used for remote control and control using GSM cellular network and SMS messages. Depending on the type, they can perform a simple on/off logic, open gates automatically, and control the temperature. They eliminate the traditional control with radio remote controls and the costs associated with their purchase for a large number of users.

SIMply MAX P01/SIMply MAX P01 12 V with on/off/alarm feature

Functioning

The relay works in GSM 900/1800 cellular network of any operator operating in Poland (the device is unlocked, an active SIM card is required). The relay has 2 controlled relay outputs for switching on and off the controlled receivers and 2 high voltage inputs for notifying about the activation of controlled devices. Commands and notifications are specific SMS text messages exchanged between the controller and the user's phone. User telephone numbers, temperatures, alarms and other functions are set using the configuration software for the PC.

power supply	
MAX P01	$100 \div 265$ V AC
MAX P01 12 V	$10 \div 16 \mathrm{VDC}$
control inputs	2
MAX P01	$160 \div 260 \mathrm{VAC}$
MAX P0112 V	$8 \div 16 \mathrm{VDC}$
voltage tolerance	$160 \div 260$ V AC
relay outputs	2
type	$1 \times \mathrm{NO}$
nominal voltage	230 V AC
load capacity	$<8 \mathrm{~A}$
ports	SIM
power consumption	
standby	1.3 W
GSM communication	<3 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-10 \div 50^{\circ} \mathrm{C}$
dimensions	3 modules (52 mm)
mounting	for TH-35 rail
ingress protection	IP20
GSM antenna	
SMA connector	
antenna dimensions	$20 \times 100 \mathrm{~mm}$
wire length	2.5 m
mounting	adhesive tape

(!) A 4-channel version of the relay is also available: SIMply MAX P04. More information on p. 94.

Functions

- Switching of the ON/OFF outputs, checking the status of the inputs;
- Time switching on of the output, for example for 30 seconds (time interval 1 seconds $\div 600$ minutes.);
- SMS notifications to the user's phone about the status or change of the input status;
- Parallel text messages to 5 phone numbers;
- Redefinition of the input and output names, for example, IN1-> tamper detect; OUT2-> pump;
- Access password ($4 \div 8$ digits);
- Automatic response after receiving the command and its program execution (as an option);
- Automatic resetting of the outputs after the power supply is restored (output status memory);
- ADMIN administrator function - factory reset and access unlock in case of a forgotten password.

SIMply MAX P04

with on/off/alarm feature

Purpose

The relay works in GSM 900/1800 cellular networks of any operator operating in Poland (the device is unlocked). In order to make the calls and execute the predefined functions, the device must have an active SIM card. The relay has 4 controlled relay outputs for switching on and off the controlled receivers and 4 high voltage inputs for notifying about the activation of controlled devices. Commands and notifications are specific SMS text messages exchanged between the controller and the user's phone.

Functions

- Switching of the ON/OFF outputs;
- Time switching on of the output, for example for 30 seconds (time interval 1 seconds $\div 600$ minutes.);
- SMS notifications to the user's phone about the status or change of the input status; Parallel text messages to 5 phone numbers; Queries about the status of input or output;
- Redefinition of the input and output names, for example, IN1-> tamper detect; OUT2-> pump;
- Access password ($4 \div 8$ digits);
- Automatic response after receiving the command and its program execution (as an option);
- Automatic resetting of the outputs after the power supply is restored (output status memory);
- There is an option to configure the device with MEMORY ON command; the MEMORY OFF command disables the option;
- ADMIN administrator function - factory reset and access unlock in case of a forgotten password.

Cost-free GSM control of the gate, gateway and barrier control

SIMply MAX P02

with CLIP feature (dial-up access) and on/off/alarm feature

Purpose

The MAX P02 relay with a built-in GSM communicator is used to remotely open automatic entrance gates, garage doors, barriers and gates using a mobile phone. It applies to objects with protected access and a large number of users with access rights, such as housing estates, garages, public and company car parks, etc. It eliminates traditional control with radio remote controls and the costs associated with their purchase for a large number of users.
The CLIP feature (dial-up access) allows you to control the output by calling the number of the card in the controller. Such a call is automatically rejected by the controller (no cost) and if our number is in the database of controller numbers, the output will be triggered.

power supply	$100 \div 265 \mathrm{VAC}$
inputs	
number	2
voltage tolerance	$160 \div 260 \mathrm{~V} \mathrm{AC}$
relay outputs	
number	2
type	$1 \times \mathrm{NO}$
nominal voltage	230 VAC
load capacity	8 A
ports	SIM, miniUSB
power consumption	
standby	1.3 W
GSM communication	<3 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-10 \div 50^{\circ} \mathrm{C}$
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20
GSM antenna	
SMA connector	
antenna dimensions	$20 \times 100 \mathrm{~mm}$
wire length	2.5 m
mounting	adhesive tape

Functioning

The relay works in GSM 900/1800 cellular networks of any operator operating in Poland (the device is unlocked). In order to make the calls and execute the predefined functions, the device must have an active SIM card. The relay has 2 independently controllable contacts and inputs with assigned functions:
OUT1/IN1: The output through which pulses are fed to the gate controller or gate bolt. The pulse time (contact closing) is set by the user. The control itself is cost-free. The user initiates a standard call to the relay number, which identifies the number and automatically rejects the call, while at the same time activating the outputs (CLIP dial-up access feature). Additionally, it is possible to control the output using a control button connected to IN1 input. You can select the operating mode of the relay: manual or automatic closing. In automatic mode, after activation by the user the relay activates the output again by itself after a certain time in order to close the gate.
OUT2/IN2: The same functions as in the MAX P01 relay.
User telephone numbers, pulse time and automatic closing time as well as OUT2/IN2 output configuration parameters are set using the configuration software on a PC or via SMS commands. Connection with the relay is carried out via USB cable.

Functions

- Cost-free control on the user side (CLIP dial-up access function);
- 2 parallel relay outputs;
- Different output activation times for each individual output can be set (for example: simultaneous control of the gate and the door);
- 2 pulse inputs for manual activation of the outputs using connected external buttons;
- Feature for automatic closing after a specified time;
- Authorization of 500 user numbers;
- PC configuration software;
- Remote setting and deletion of users via SMS commands;
- ADMIN administrator function - factory reset and access unlock in case of a forgotten password.

SIMply MAX P03

with temperature control function + on/off/alarm feature

Purpose

The MAX P03 relay with a built-in GSM communicator is used to remotely open automatic entrance gates, garage doors, barriers and gates using a mobile phone. The module implements simple functions of notifying about temperature exceeding and allows controlling the additional connected device on an ON/OFF basis. User telephone numbers, temperatures, alarms, and other functions are set using the configuration software for the PC. Connection with the relay is carried out via USB cable.

power supply	$100 \div 265$ V AC
inputs	
number	1
voltage tolerance	$160 \div 260 \mathrm{~V} \mathrm{AC}$
relay outputs	
number	2
type	$1 \times \mathrm{NO}$
nominal voltage	230 VAC
load capacity	<8 A
temperature sensor type	DS1820
temperature probe	RT4
temperature adjustment range	$+30 \div 65^{\circ} \mathrm{C}$
hysteresis (adjustable)	$0 \div 10^{\circ} \mathrm{C}$
setting accuracy	$0.1{ }^{\circ} \mathrm{C}$
measurement accuracy	$0.5{ }^{\circ} \mathrm{C}$
ports	SIM
power consumption	
standby	1.3 W
GSM communication	<3 W
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
working temperature	$-10 \div 50^{\circ} \mathrm{C}$
dimensions	3 modules (52 mm)
mounting	for TH-35 rail
ingress protection	IP20
GSM antenna	
SMA connector	$20 \times 100 \mathrm{~mm}$
wire length	2.5 m

Functions

1. System

- Setting the access password for SMS commands;
- Output status memory;
- Readout of the current temperature;
- Checking the condition of the sensor and reporting faults;
- ADMIN administrator function - factory reset and access unlock in case of a forgotten password.

2. Temperature control

- Operating modes: heating or cooling;
- The regulator can be switched on/off (ON/OFF).

3. Temperature alarm

- Alarm for exceeding the maximum and minimum temperature;
- Notifications to 5 phone numbers;
- The alarm feature can be switched on/off (ON/OFF);
- The option of sending a second text message in case the temperature is constantly above the threshold beyond the set number of minutes.

4. Anti-freeze temperature

- The anti-freeze feature can be switched on/off (ON/OFF);
- The activated function works despite the inactive temperature control.

5. Output OUT

- Output control - 2 separate operating modes:

SMS mode:

- output controlled directly by SMS commands;
- redefinition of the output name, for example: OUT1=lamp;
- ON/OFF control and time switching on of the output;

ALARM mode:

- contact assigned to temperature alarms - exceeding the threshold forces the actions of the On/pulse contact;
- option ON: contact closed above the alarm threshold, the contact opens after a drop below the hysteresis value;
- pulse option: contact closing for a set number of seconds after exceeding the threshold;
- ON/pulse options are set separately for minimum and maximum alarm;

6. Input IN

- Redefinition of the input name, for example: IN1= TUMPER DETECT;
- Select the option to trigger an SMS message: ON - signal appears; OFF - signal loss; ON/OFF - loss and appearance of the signal;
- Notifications about input activation are sent to 5 phone numbers.

Purpose

The MAX P05 relay with a built-in GSM communicator is used as a pulse counter or operating time counter with the ability of remote management of the connected device by means of a mobile phone. The module implements simple functions of notifying about exceeding threshold values of a number of pulses or operating time and allows to control additional connected device on an ON/OFF basis. User telephone numbers, counting options, alarms and other functions are set using the configuration software for the PC. Connection with the relay is carried out via USB cable. Connection with the relay is carried out via USB cable.

power supply inputs number voltage tolerance minimum length of input pulse relay outputs number	$100 \div 265 \mathrm{VAC}$
type	
nominal voltage	$160 \div 260 \mathrm{~V} \mathrm{AC}$
load capacity	
ports	
power consumption	
standby	

Functions

1. System

- Password access for SMS input commands;
- Output status memory;
- Readout of the current value of pulses and operating hours;
- ADMIN administrator function - factory reset and access unlock in case of a forgotten password.

2. Pulse/operating time counting

- Individual operating mode for each input: pulse counter/operating time counter;
- Counting of high voltage signals $160 \div 260$ V AC;
- Time filters for input signals;
- SMS alerts for preset thresholds of pulses and operating time for up to 5 phone numbers.

3. Output OUT

- Output control - 2 separate operating modes:

SMS mode:

- output controlled directly by SMS commands;
- redefinition of the output name, for example: OUT1= POMPE;
- ON/OFF control and time switching on of the output;

ALARM mode:

- contact assigned to temperature alarms - exceeding the threshold forces the actions of the following contact: On/pulse;
- option ON: contact closed above the alarm threshold, the contact opens after a drop below the hysteresis value;
- pulse option: contact closing for a set number of seconds after exceeding the threshold;
- ON/pulse options are set separately for minimum and maximum alarm.

4. Input IN

- Redefinition of the input name, for example: IN1= TUMPER DETECT;
- Select the option to trigger an SMS message: ON - signal appears; OFF - signal loss; ON/OFF - loss and appearance of the signal;
- Notifications about input activation are sent to 5 phone numbers.

MAX H04

Purpose

The MAX HO4 module is one of the few controllers that allow you to connect and use it without any programming elements. With the special configuration program H04 Config, it can be used by anyone who does not want to learn the programming languages and complicated PLC programming procedures.
Hardware resources, which means the number of outputs/inputs and software functions allow us to connect only one controller and use all functions analogous to those of Simply MAX P-series relays. This allows you to easily control the system through one device and one phone number, and avoid the costs associated with supporting multiple SIM cards. Analog inputs in the controller allow you to connect any measuring transducer and control or monitor min/max states of any value, not only temperature but also, for example, currents, voltages, levels, pressures, etc.

H04 Config

Purpose

An easy and simple way to configure the controller using H04 Config.
Definition of phones, a setting of alarm thresholds, scaling of analog inputs, time synchronization, etc.

Functions

- Control of outputs via SMS commands;
- Two-state regulation of the HEATING/COOLING type (based on the definitions of the analog input scale, threshold, and output assigned to it);
- Selection of options for actuation and alarm triggering (high state "1" or low state "0");
- Queries about the status of inputs and outputs by SMS commands;
- SMS/VOICE alerts about the activation of inputs;
- SMS/VOICE alerts about exceeding the measurement value, for example exceeding the temperature;
- Definition of the content of SMS alarms (up to 160 characters);
- The option of sending a second text message when the alarm threshold is continuously exceeded;
- Output control depending on the assigned input:
- LEVEL option - representation of the state (IN 1 => OUT 1, IN 0 => OUT 0);

- PULSE option - time activation of the output for a set time after the input has been activated;

- Printing of states and values on LCD;
- User menu for settings of alarm threshold values and adjustments, telephone numbers, control options, etc.
- Control of the selected output as a function of CLIP (dial-up access) and astronomical clock.

Configuration software

Nastawa temp.	
Prog T1	
Alarm MIN	
Tel. 1	
$[$ D]Tel. 1	
+48695	
13:45:23	

Software tools

A hardware and software system called "forth-system" is responsible for the execution of tasks and interpretation of the software written with the ForthLogic programming language. The ForthLogic underlying computational model consists of stacks, global variables, a dictionary, an input buffer, and an output buffer. The ForthLogic language allows describing parallel processes and runs in a multi-tasking environment.
The interactive programming and application development environment for MAX controllers in ForthLogic language consists of Notepad++ text editor, PuTTY terminal program and ForthLogic Programmer, which provides two-way communication between PC and MAX controller.
This environment allows you to create scripts in the ForthLogic language, program MAX controllers and interact with the controller in terminal mode.

The MAXLadderSOFT software allows you to easily replace the "relay" schema with the programming language of the controller.
The program allows:

- to create and edit applications using the ladder diagram language [LAD];
- to check the correctness of the schema design;
- for direct communication between the controller and the computer;
- to upload applications to the memory of the controller.

Direct operation with the system of the controller is called dialog mode.
There are 2 types of dialog operation: terminal and remote.
Terminal mode means working with a HyperTerminal-type program (MAX-PC connection via USB). The terminal mode is primarily used to learn to program, solve programming tasks or solve problems in controller operation.
Remote mode (only for controllers with GSM module) - the controller operates with the phone via SMS. In this mode, the phone display performs similar functions as the terminal window on the computer monitor. Remote mode is used to remotely control devices connected to the controller. The MAX Tool service program allows you to set controller operating parameters, upload firmware, and Forth language applications, open Extensions and communicate directly in a simplified terminal mode.

HyperTerminal

Notepad++Putty+Forthlogic Programmer

MaxLadder Soft

Max Tool

Section IV
 Video intercoms, door stations, mailboxes

Chapter 18
Video intercom monitors 102
Chapter 19
Door stations and accessories 107
Chapter 20
Mailboxes 113

Video intercom monitors

$\begin{aligned} & \text { t } \\ & \text { ㅁ } \\ & \text { 릉 } \end{aligned}$																$\begin{aligned} & \text { 응 } \\ & \frac{0}{8} \\ & \text { 80 } \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$				E E $\frac{n}{5}$ $\frac{0}{2}$ $\frac{0}{0}$ $\frac{x}{x}$ $\frac{1}{x}$	
$\begin{aligned} & \text { MK-12B } \\ & \text { MK-12W } \end{aligned}$	-	\bullet	-	-	$7{ }^{\prime \prime}$	1280×600	-	-	-	-	-	-	-	$\begin{gathered} 2+0 \\ \text { or } \\ 1+1 \end{gathered}$	-	-	-	-	-	$208 \times 150 \times 22$	expansion with 3 additional monitors or MU uniphones built-in memory for a register of 100 photos
MK-11B MK-11W	-	-	-	\bullet	$7{ }^{7 \prime}$	800×600	-	-	-	-	-	-	-	$\begin{gathered} 2+0 \\ \text { or } \\ 1+1 \end{gathered}$	-	-	-	-	-	$245 \times 159 \times 18,5$	preview with starting the conversation and opening the door, expansion with 3 additional monitors or MU uniphones, mechanical buttons
MK-10EX ${ }^{1}$ MK-10EXH ${ }^{12}$	\bullet	-	-	-	$7{ }^{\prime \prime}$	720p	\bullet	-4	\bullet	-	\bullet	-	\bullet	$\begin{gathered} 2+2 \\ \text { or } \\ 1+3 \end{gathered}$	-	-	\bullet	\bullet	\bullet	$226 \times 151 \times 23$	4 GB micro SD card, connection of alarm detectors to cameras, setting of 3 volume modes, 11 ringtone melodies/separate ringtone for every entrance, preview with starting the conversation and opening the door, expansion with 3 additional monitors, smoothly adjustable bolt opening time $1 \div 99 \mathrm{sec}$
MK-10FSD ${ }^{1}$ MK-10FSDH ${ }^{12}$	-	-	-	\bullet	$7{ }^{\prime \prime}$	720p	-	- ${ }^{4}$	\bullet	-	\bullet	-	\bullet	$\begin{gathered} 2+2 \\ \text { or } \\ 1+3 \end{gathered}$	\bullet	-	\bullet	-	-	$245 \times 165 \times 20$	4 GB micro SD card, connection of alarm detectors to cameras, setting of 3 volume modes, 11 ringtone melodies/separate ringtone for every entrance, preview with starting the conversation and opening the door, expansion with 3 additional monitors
MK-10 ${ }^{1}$	\bullet	-	-	\bullet	$4 "$	480×320	-	-4	-	-	-	-	\bullet	$\begin{gathered} 2+2 \\ \text { or } \\ 1+3 \end{gathered}$	\bullet	-	-	-	-	$117 \times 168 \times 20$	4 GB micro SD card, connection of alarm detectors to cameras, setting of 3 volume modes, 11 ringtone melodies/separate ringtone for every entrance, preview with starting the conversation and opening the door, expansion with 3 additional monitors, smoothly adjustable bolt opening time $1 \div 99 \mathrm{sec}$
MK-08B	\bullet	-	\bullet	\bullet	$7{ }^{\prime \prime}$	640×480	-	\bullet	-	-	\bullet	\bullet	-	$\begin{gathered} 2+0 \\ \text { or } \\ 1+1 \end{gathered}$	\bullet	-	-	-	-	$241 \times 161 \times 23$	preview with starting the conversation and opening the door, expansion with 3 additional monitors or MU uniphones, built-in memory for a register of 100 photos, black or white
MK-08F	\bullet	\bullet	-	-	$7{ }^{7 \prime}$	640×480	-	-	-	-	\bullet	-	-	$\begin{gathered} 2+0 \\ \text { or } \\ 1+1 \end{gathered}$	\bullet	-	-	-	-	$241 \times 161 \times 23$	preview with starting the conversation and opening the door, expansion with 3 additional monitors or MU uniphones, built-in memory for a register of 100 photos
MK-06B	\bullet^{3}	\bullet	-	\bullet	$7{ }^{7}$	640×480	-	\bullet	\bullet	-	\bullet	\bullet	\bullet	$\begin{gathered} 2+0 \\ \text { or } \\ 1+1 \end{gathered}$	-	-	-	-	\bullet	$282 \times 135 \times 23$	preview with starting the conversation and opening the door, expansion with 3 additional monitors or MU uniphones
MK-06WF	${ }^{3}$	\bullet	-	-	$7{ }^{\prime \prime}$	640×480	-	-	-	\bullet	\bullet	\bullet	\bullet	$\begin{gathered} 2+0 \\ \text { or } \\ 1+1 \end{gathered}$	\bullet	-	-	-	\bullet	$282 \times 135 \times 23$	preview with starting the conversation and opening the door, expansion with 3 additional monitors or MU uniphones, built-in memory for a register of 100 photos
MK-04B MK-04W	\bullet	-	-	\bullet	$7{ }^{\prime \prime}$	640×480	-	-	\bullet	-	-	\bullet	\bullet	$\begin{gathered} 2+0 \\ \text { or } \\ 1+1 \end{gathered}$	-	-	-	-	\bullet	$254 \times 160 \times 18$	expansion with 3 additional monitors or MU uniphones, moveable buttons, black or white
MK-03 MK-03W	-	-	-	\bullet	$7{ }^{\prime \prime}$	640×480	\bullet	-	\bullet	\bullet	-	\bullet	\bullet	$\begin{gathered} 2+0 \\ \text { or } \\ 1+1 \end{gathered}$	-	-	-	-	-	$241 \times 161 \times 23$	preview with starting the conversation and opening the door, expansion with 3 additional monitors or MU uniphones

Legend:
${ }^{1}$ The MK-10 series does not work with other monitors
${ }^{2}$ Monitors read the AHD signal
${ }^{3}$ With the additional handset
${ }^{4}$ For each camera separately

- Hands-free monitor
-7" panoramic screen TFT LCD 1280×600
- Support for 2 door stations (or 1 station + 1 CCTV camera)
- Intercom function for voice communication between internal devices
- Touch, backlit control panel (backlight color blue)
- Electric door strike and automatic door control
- Color of the housing: black or white
- Adjustment of monitor parameters (ringtone volume, talk volume, brightness, and color)
- The module can be expanded by 3 selectable additional monitors or uniphones (except MK10 series monitors)
- Preview with the ability to enable sound and open the door
- Wiring: 4+2 for bolt +2 for gate
- Power supply: 14.5 V DC
- Power supply for DIN rail included
- Dimensions: $208 \times 150 \times 22 \mathrm{~mm}$

MK-11B/MK-11W

MK-10EXH ${ }^{1}$

- Hands-free monitor
- 7" panoramic touch screen LCD HD 1280×720
- On-screen menu in 10 languages (Polish,
English, Ukrainian, Russian, French, Czech,
Slovak, Spanish, Japanese, Chinese)
- Preview with the ability to start the conver-
sation and open the door without a call from
outside
- Support for 2 door stations and 2 CCTV
cameras (CVBS and AHD mode selectable in
the menu)
- Motion detection performed directly from
cameras
- Electric door strike and automatic door control
- Photo/video recording function (micro SD card
up to 16 GB not included)
- Adjustment of image parameters for each
camera
- Ability to set 3 volume modes during the day
- Smoothly adjustable bolt opening time 1 $\div 99$ sec
- 12 ringtone melodies/a separate ringtone can be set for each input.
- Addressed intercom - connection to the selected monitor
- Digital frame function
- Music and movie player
- Wiring: 4+2 for bolt +2 for gate
- Power supply: 14.5 V DC
- Power supply for DIN rail included
- Dimensions: $226 \times 151 \times 23 \mathrm{~mm}$
- Material: Brushed aluminum/glass/plastic
- The module can be expanded by 3 additional monitors from the same series only (MK-10)

[^8]- Hands-free monitor
- 7" panoramic color screen LCD HD 720p
- On-screen menu in 10 languages: Polish, English, Ukrainian, Russian, French, Czech, Slovak, Spanish, Japanese, Chinese
- Touch, backlit control panel (white light)
- Preview with the ability to start the conversation and open the door without a call from outside
- Support for 2 door stations and 2 CCTV cameras (CVBS and AHD mode selectable in the menu)
- Motion detection performed directly from cameras
- Electric door strike and automatic door control.
- Photo/video recording function (micro SD card up to 16 GB not included)
- Adjustment of image parameters for each camera
- Ability to set 3 volume modes during the day
- Smoothly adjustable bolt opening time 1 $\div 99$ sec
- 12 ringtone melodies/a separate ringtone can be set for each input
- Addressed intercom - connection to the selected monitor
- Digital frame function
- Music and movie player
- Wiring: 4+2 for bolt +2 for gate
- Power supply: 14.5 V DC
- Power supply for DIN rail included
- Dimensions: $245 \times 165 \times 20 \mathrm{~mm}$
- Material: Brushed aluminum / glass / plastic
- The module can be expanded by 3 additional monitors from the same series only (MK-10)

MK-10K ${ }^{1}$

MK-08B

- Hands-free monitor
- 7" panoramic color screen TFT LCD 640×480
- Built-in memory for a register of 100 photos
- Support for 2 door stations (or 1 station + 1 CCTV camera)
- Intercom function for voice communication between internal devices
- Touch, backlit control panel (backlight color blue)
- Electric door strike and automatic door control
- Color of the housing: black
- 12 ringtone melodies/a separate ringtone can be set for each input
- Digital frame function
- Wiring: 4+2 for bolt +2 for gate
- Power supply: 14.5 V DC
- Power supply for DIN rail included
- Dimensions: $226 \times 151 \times 23 \mathrm{~mm}$
- Material: glass/plastic
- The module can be expanded by 3 additional monitors from the same series only (MK-10)

- Hands-free monitor
- 7" panoramic color screen TFT LCD 640×480
- Built-in memory for a register of 100 photos
- Support for 2 door stations (or 1 station + 1 CCTV camera)
- Intercom function for voice communication between internal devices
- Touch, backlit control panel (backlight color blue)
- Electric door strike and automatic door control
- Color of the housing: white
- Adjustment of monitor parameters (ringtone volume, talk volume, brightness, and color)
- On-screen menu in 8 languages: Polish, English, German, French, Spanish, Italian, Chinese, Russian
- The module can be expanded by 3 selectable additional monitors or uniphones (except MK10 series monitors)
- Preview with the ability to enable sound and open the door
- Wiring: 4+2 for bolt + 2 for gate
- Power supply: 14.5 V DC
- Power supply for DIN rail included
- Dimensions: $241 \times 161 \times 23 \mathrm{~mm}$

MK-06WF

- On-screen menu in 8 languages: Polish, English, German, French, Spanish, Italian, Chinese, Russian
- Preview with the ability to enable sound and open the door
- Installation: 4+2 for bolt +2 for gate
- The module can be expanded by 3 additional monitors or uniphones (except MK-10 series monitors)
- Power supply: 14.5 V DC
- Power supply for DIN rail included
- Dimensions: $282 \times 135 \times 23 \mathrm{~mm}$
previously MK-01/MK-02

- Hands-free monitor
- 7" panoramic color screen TFT LCD 640×480;
- Support for 2 door stations (or 1 station + 1 CCTV camera)
- Electric door strike and automatic door control
- The module can be expanded by 3 additional, randomly selected monitors or uniphones (except MK-10 series monitors)
- Adjustment of monitor parameters (volume, brightness and color)
- Color of the housing:

MK-04B - black
MK-04W - white

- Movable buttons
- Wiring: $4+2$ for bolt +2 for gate
- Power supply: 14.5 V DC
- Power supply for DIN rail included
- Dimensions: $245 \times 160 \times 18 \mathrm{~mm}$

MK-03 black/MK-03W white

- Hands-free monitor
- 7" panoramic color screen TFT LCD 640×480
- Touch, backlit control panel (backlight color blue)
- Support for 2 door stations (or 1 station + 1 CCTV camera)
- Electric door strike and automatic door control;
- The module can be expanded by 3 additional, randomly selected monitors or uniphones (except MK-10 series monitors);
- Intercom and call forwarding
- Adjustment of monitor parameters (ringtone volume, talk volume, brightness, and color)
- Color of the housing:

MK-03 - black
MK-03W - white

Door stations and accessories

t 흔			E E \vdots E 0 0 \vdots	E E 			\% 这		$\begin{aligned} & \frac{2}{0} \\ & \frac{0}{3} \\ & \vdots \\ & \frac{\pi}{0} \\ & 3 \\ & 0 \end{aligned}$							
KK-20DA	1	$1 / 3 /$	800	1.8	110°	-	5	-	\bullet^{2}	-	-	-	-	$84 \times 150 \times 36$	$78 \times 142 \times 31$	built-in card reader and encryptor; backlit call button and keypad; relay (voltage free) output to the bolt
$\begin{aligned} & \text { KK-01 } \\ & \text { KK-01S } \end{aligned}$	1	$1 / 3 /$	600	3.6	87°	-	4	-	$\bullet{ }^{1}$	-	-	-	\bullet	$59 \times 135 \times 39$	-	relay (voltage free) output to the bolt
KK-01FP*	1	$1 / 3 /$	600	3.6	87°	$\pm 10^{\circ}$	6	\bullet	\bullet^{2}	\bullet	- ${ }^{5}$	-	-	$120 \times 250 \times 51$	$110 \times 240 \times 46$	front panel made from brushed stainless steel, fingerprint reader (max 900), backlit signboard and call button, relay (voltage free) output to the bolt
KK-02	2	$1 / 3 /$	600	3.6	87°	-	6	\bullet	\bullet^{2}	-	\bullet	-	\bullet	$97 \times 130 \times 43$	-	backlit signboard and call button, relay (voltage free) output to the bolt
KK-03	1	$1 / 3 /$	600	3.6	87°	$\pm 10^{\circ}$	6	-	\bullet^{2}	-	-	-	\bullet	$78 \times 185 \times 60$	-	a keypad to control the lock with a PIN code, backlit buttons, output to the bolt - 12 V DC
$\begin{aligned} & \text { KK-04 } \\ & \text { KK-04G } \end{aligned}$	1	1/3"	600	3.6	87°	$\pm 10^{\circ}$	8	-	$\bullet{ }^{1}$	-	-	-	-	$150 \times 203 \times 55$	$130 \times 183 \times 50$	front panel made from brushed stainless steel, backlit call button, relay (voltage free) output to the bolt
KK-05	1	$1 / 3 /$	600	3.6	87°	$\pm 10^{\circ}$	6	\bullet	\bullet^{2}	-	\bullet^{5}	\bullet	-	$120 \times 250 \times 51$	$110 \times 240 \times 46$	front panel made from brushed stainless steel, a keypad to control the lock with a PIN code, backlit signboard and call button, relay (voltage free) output to the bolt
KK-05K	1	$1 / 3 /$	600	3.6	87°	$\pm 10^{\circ}$	6	-	\bullet^{2}	-	\bullet^{5}	-	-	$120 \times 250 \times 51$	$110 \times 240 \times 46$	front panel made from brushed stainless steel, RFID reader enables bolt control via proximity tags backlit signboard and call button, relay (voltage free) output to the bolt
KK-08	2	$1 / 3 /$	600	3.6	87°	$\pm 10^{\circ}$	6	\bullet^{3}	\bullet^{2}	-	${ }^{5}$	-	-	$120 \times 250 \times 51$	$110 \times 240 \times 46$	front panel made from brushed stainless steel, a keypad to control the lock with a PIN code, backlit signboard and call button, relay (voltage free) output to the bolt
KK-08K	2	$1 / 3 /$	600	3.6	87°	$\pm 10^{\circ}$	6	$\bullet 3$	\bullet^{2}	\bullet	\bullet^{5}	-	-	$120 \times 250 \times 51$	$110 \times 240 \times 46$	front panel made from brushed stainless steel, RFID reader enables bolt control via proximity tags backlit signboard and call buttons, relay (voltage free) output to the bolt
KK-09	4	$1 / 3 /$	600	3.6	87°	$\pm 10^{\circ}$	6	- ${ }^{4}$	\bullet^{2}	-	\bullet^{5}	-	-	$120 \times 250 \times 51$	$110 \times 240 \times 46$	front panel made from brushed stainless steel, backlit signboard and call button, relay (voltage free) output to the bolt

Legend:

* remote control for programming included
** works only with MK-10EXH and MK10-FSDH
A - card reader
D - keypad
FP - fingerprint reader
G - graphite
H - sends the AHD signal
K - Master card for adding and removing users included
S - silver
${ }^{1}$ Power supply from the monitor
${ }^{2} 12 \div 14.5 \mathrm{~V}$ DC power supply
${ }^{3} 2 \times 4$-wires installation
${ }^{4} 4 \times 4$-wires installation
${ }^{5}$ Can be surface-mounted with additional box power supply
- 1- subscriber door station
- $1 / 3^{\prime \prime}$ color image sensor
- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Backlight: 4 IR LEDs
- Protection level: IP65
- Power supply: from the monitor
- Housing: hardened aluminum alloy
- Installation: surface-mounted
- Color of the housing: black/silver
- Dimensions: $58 \times 135 \times 39 \mathrm{~mm}$

KK-01FP

- 1- subscriber door station
- 1/3" color image sensor
- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 6 IR LEDs (infrared)
- Bolt control with opening time adjustment
- Backlit selection button and signboard for your name (backlight color: blue)
- Vandal-proof front panel made from stainless steel
- Flush-mounted installation or surface-mounted with a cover
- Ingress protection - IP65
- Output for the additional bolt release button
- Built-in capacitive fingerprint reader (max. 900 fingerprints)
- Power supply from a $12 \div 15$ V DC external power supply
- Dimensions: $120 \times 250 \times 51 \mathrm{~mm}$
- Box dimensions: $110 \times 240 \times 46 \mathrm{~mm}$
- A remote control that is necessary for programming is included in the set.

KK-02

KK-03

-1- subscriber door station

- 1/3" color image sensor
- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Built-in combination lock
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 6 IR LEDs (infrared)
- Housing: hardened aluminum alloy
- Backlit keyboard
- Installation: surface-mounted
- Output for 12 V DC bolt power supply
- Electric door strike control with opening time adjustment $1 \div 99$ s
- Dimensions: $78 \times 185 \times 60 \mathrm{~mm}$
- An additional output switch can be connected
- Protection level IP65
- 1- subscriber door station with a camera
- Image sensor: $1 / 3$ " color
- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 8 IR LEDs (infrared)
- Backlit selection button (backlight color: blue)
- Vandal-proof front panel made from stainless steel
- Flush-mounted installation (surface-mounting is not available)
- Power supply from the monitor
- Ingress protection: IP65
- Dimensions: $150 \times 203 \times 55 \mathrm{~mm}$
- Box dimensions: $130 \times 183 \times 50 \mathrm{~mm}$
- 1- subscriber door station
- Vandal-proof front panel made from stainless
- CCD color image sensor steel

- Lens viewing angle: approx. 87°
- Flush-mounted installation or surface-moun-
- Resolution: 600 lines ted with a cover;
- Lens: 3.6 mm
- Built-in combination lock for the opening of the door using a PIN code
- Output for the additional bolt release button.
- Timer output
- Ingress protection IP65
- Power supply from a $12 \div 15$ V DC external power supply
- Dimensions: $120 \times 250 \times 51 \mathrm{~mm}$
- Box dimensions: $110 \times 240 \times 46 \mathrm{~mm}$
- 1- subscriber door station
- CCD color image sensor

- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 6 IR LEDs (infrared)
- Electric door strike control with opening time adjustment 1 $\div 99$ s
- Output for the additional bolt release button
- Backlit selection button and signboard
- Vandal-proof front panel made from stainless steel
- Flush-mounted installation or surface-mounted with a cover
- Built-in RFID reader: Unique 125 kHz
- Reader capacity: max 1000 cards
- The MASTER card is included in the set with the station, allowing you to add the cards yourself
- Power supply from a $12 \div 15$ V DC external power supply
- Dimensions: $120 \times 250 \times 51 \mathrm{~mm}$
- Box dimensions: $110 \times 240 \times 46 \mathrm{~mm}$
- The remote control is used for programming (not included)

KK-08

- 2- subscriber door station
- CCD color image sensor
- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 6 IR LEDs (infrared)
- Electric door strike control with opening time adjustment 1 $\div 99 \mathrm{~s}$
- Output for the additional bolt release button
- Backlit selection button and signboard
- Vandal-proof front panel made from stainless steel
- Flush-mounted installation or surface-mounted with a cover
- Built-in combination lock for the opening of the door using a PIN code
- Output for the additional bolt release button
- Timer output
- Ingress protection IP65
- Power supply from a $12 \div 15 \mathrm{~V}$ DC external power supply
- Dimensions: $120 \times 250 \times 51 \mathrm{~mm}$
- Box dimensions: $110 \times 240 \times 46 \mathrm{~mm}$
inox

- 2- subscriber door station
- Flush-mounted installation or surface-moun-
- CCD color image sensor ted with a cover;
- Lens viewing angle: approx. 87°
- Built-in RFID reader: Unique 125 kHz
- Resolution: 600 lines
- Reader capacity: max 1000 cards
- Lens: 3.6 mm
- The MASTER card is included in the set with
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$ the station, allowing you to add the cards
- Backlight: 6 IR LEDs (infrared)
- Electric door strike control with opening time adjustment 1 $\div 99$ s
- Output for the additional bolt release button
- Power supply from a $12 \div 15 \mathrm{~V}$ DC external power supply
- Dimensions: $120 \times 250 \times 51 \mathrm{~mm}$
- Backlit selection button and signboard
- Vandal-proof front panel made from stainless steel
- Box dimensions: $110 \times 240 \times 46 \mathrm{~mm}$
- The remote control is used for programming (not included)

KK-09

- 4- subscriber door station
- 1/3" color image sensor
- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 6 IR LEDs (infrared)
- Backlit selection button and signboard for your name (backlight color- blue)
- Vandal-proof front panel made from stainless steel
- Flush-mounted installation or surface-mounted with a cover
- Ingress protection: IP65
- Power supply from a $12 \div 15 \mathrm{~V}$ DC external power supply
- Dimensions: $120 \times 250 \times 51 \mathrm{~mm}$
- Box dimensions: $110 \times 240 \times 46 \mathrm{~mm}$

KK-01-20DA

	-1- subscriber door station	- $12 \div 15 \mathrm{~V}$ DC power supply
	- 1/3" image sensor	- Operating temperature range: $-25^{\circ} \mathrm{C} \div 50^{\circ} \mathrm{C}$
	- Camera resolution 800 TVL	- Power consumption:
	- Lens: $1.8 \mathrm{~mm} /$ viewing angle 110°	- standby 0.40 W
	- Night-time backlight - IR LED (infrared)	- operation 0.95 W
23	- Built-in combination lock: max. 200 codes	- Ingress protection: IP65
4 5 6 7 8 9 0	- Built-in Unique 125 kHz proximity reader: max	- 2 contactless keychains included
$\begin{array}{r}78 \\ 78 \\ \times \quad 0 \\ \hline\end{array}$	200 tags	- Programming with the keyboard
	- Backlit keypad and ringtone button	- Dimensions: $84 \times 150 \times 36 \mathrm{~mm}$
	- Protection against unauthorized use	- Box dimensions: $78 \times 142 \times 31 \mathrm{~mm}$

Keypads

- Code lock with RFID proximity card reader;
- Vandal-proof metal housing;
- Built-in RFID proximity card reader;
- Support for two zones (for example door and gate);
- Doorbell function (alternatively instead of zone 2);
- Memory capacity:
zone 1 => 1000 user codes and cards;
zone 2 => 10 user codes and cards;
- Backlit keyboard;
- Power supply: $12 \div 24$ V DC, $9 \div 18$ V AC;
- Adjustable relay opening time ($0 \div 99 \mathrm{~s}$): 0 s , which means unstable mode;
- Additional switches for opening entrances can be connected;
- The input of an open door sensor, which reduces the time when the electric door strike is open to a minimum;
- Anti-tamper sensor;
- Power consumption: stand-by $<40 \mathrm{~mA}$, operation $<70 \mathrm{~mA}$;
- Operating temperature range: $-20 \div 50^{\circ} \mathrm{C}$;
- Ingress protection: IP65;
- Dimensions: $76 \times 120 \times 22 \mathrm{~mm}$.

Accessories

KB-01
RFID keyring

KB-02
RFID card

KB-04 RFID sticker

EZ-02 low-current electric door strike
EZ-03 low-current electric door strike with memory and switch
EZ-04 DC electric door strike with memory without switch
EZ-05 DC electric door strike without memory with breaker

Product	Power supply	Power consumption	Memory	Switch
EZ-02	12 V DC	270 mA	-	-
EZ-03	12 V DC	270 mA	\bullet	\bullet
EZ-04	230 V AC	270 mA	\bullet	-
EZ-05	230 V AC	270 mA	-	\bullet

[^9]
DSW-1 low voltage acustic signaller

Purpose

The relay is designed for F\&F video intercoms. It activates an additional optical (using a light source) or sound (using, for example, a siren) signaling during a call from a door station. When triggered, the contact switches every 1 second. The operating time is adjustable from 5 to 30 seconds.

power supply	$100 \div 265 \mathrm{VAC}$
maximum load current (AC-1)	2 A
switch-on/activation time (adjustable)	$5 \div 30 \mathrm{~s}$
switching time ON/OFF	$1 \mathrm{~s} / 1 \mathrm{~s}$
power consumption	0.25 W
standby	0.6 W
on	$2.5 \mathrm{~mm}^{2}$ screw terminals
terminal	0.4 Nm
tightening torque	$-15 \div 50^{\circ} \mathrm{C}$
working temperature	$51 \times 67 \times 26 \mathrm{~mm}$
dimensions	surface
mounting	IP20
protection level	

Z|-15 $15 \mathrm{~V} / 12 \mathrm{~W}$ pulse power supply

input voltage	15 VDC
output power	12 W
current limit	Imax $=110 \%$ lout
minimum load	0%
keying frequency	70 kHz
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
wight	80 g
mounting	for $\mathrm{TH}-35$ rail
protection level	IP20

$\begin{aligned} & \text { tu } \\ & \text { 흔 } \end{aligned}$				Lens viewing angle									
SLA-KK-04-SKM	\bullet	-	600	87°	$\pm 10^{\circ}$	4+2	-	$260 \div 410$	250	285×332	260×110	241×38	backlit call button, relay (voltage free) output to the bolt, lighting 8 IR LEDs
SLA-KK-04-SKP	-	-	600	87°	$\pm 10^{\circ}$	$4+2$	-	$190 \div 255$	250	285×385	265×360	241×45	backlit call button, relay (voltage free) output to the bolt, lighting 8 IR LEDs
SLA-KK-05-SKM	-	-	600	87°	$\pm 10^{\circ}$	$4+2$	\bullet	$260 \div 410$	250	285×385	260×110	241×38	a keypad to control the lock with a PIN code, backlit call button and keypad, lighting 6 IR LEDs
SLA-KK-05-SKP	\bullet	-	600	87°	$\pm 10^{\circ}$	4+2	-	190 255	250	285×385	265×360	241×45	a keypad to control the lock with a PIN code, backlit call button and keypad, lighting 6 IR LEDs
SLC-1201A-SKM	-	-	2 Mpix	170°	-	2	-	$260 \div 410$	270	290×290	290×150	230×30	RFID reader enables bolt control via proximity tags, backlit signboard with a place for your own note, supplies 300 mA 12 V voltage to the bolt, LED night-time backlight (white light)
SLC-1201A-SKP	-	-	2 Mpix	170°	-	2	\bullet	190 255	250	285×385	265×360	241×45	RFID reader enables bolt control via proximity tags, backlit signboard with a place for your own note, supplies 300 mA 12 V voltage to the bolt, LED night-time backlight (white light)
SLC-1401D-SKM	-	-	2 Mpix	170°	-	2	-	$260 \div 410$	250	285×385	260×110	241×38	a keypad to control the lock with a PIN code, backlit keyboard, supplies 300 mA 12 V voltage to the bolt, LED night-time backlight (white light)
Legend:				SKP	all thic	19	mm;	A -	d read		D - keypad		

Analog mailboxes

SLA-KK-04-SKM

mailbox with a video intercom

Mailbox

- Type of the mailbox: pass-through with video intercom
- Number of throw-in slots: 1
- Material: milled stainless steel
- Number of intercom or video intercom buttons: 1
- Type of camera used: KK-04
- Drawer width: 250 mm
- Adjustment of the depth of the box: $260 \div 410 \mathrm{~mm}$
- Front panel dimensions: $285 \times 332 \mathrm{~mm}$
- Back panel dimensions: $260 \times 110 \mathrm{~mm}$
- Throw-in slot: $241 \times 38 \mathrm{~mm}$

KK-04 door station

- 1- subscriber door station with a camera
- Image sensor: 1/3" color
- Lens viewing angle: approx. 87°
- Resolution: 600 lines / 3.6 mm lens
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 8 IR LEDs (infrared)
- Backlit selection button
(backlight color: blue)
- Power supply from the monitor
- Ingress protection: IP65

Mailbox

- Type of the mailbox: pass-through with video intercom
- Number of throw-in slots: 1
- Material: milled stainless steel
- Number of intercom or video intercom buttons: 1
- Type of camera used: KK-04
- Drawer width: 265 mm
- Adjustment of the depth of the box: $190 \div 255 \mathrm{~mm}$
- Front panel dimensions: $285 \times 385 \mathrm{~mm}$
- Throw-in slot: $241 \times 45 \mathrm{~mm}$

KK-04 door station

- 1- subscriber door station with a camera
- Image sensor: 1/3" color
- Lens viewing angle: approx. 87°
- Resolution: 600 lines / 3.6 mm lens
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 8 IR LEDs (infrared)
- Backlit selection button
(backlight color: blue)
- Power supply: from the monitor
- Ingress protection: IP65

SLA-KK-05-SKM

mailbox with a video intercom

Mailbox

- Type of the mailbox: pass-through with video intercom
- Number of throw-in slots: 1
- Material: polished stainless steel
- Type of door station used: KK-05
- Drawer width: 250 mm
- Adjustment of the depth of the box: $260 \div 410 \mathrm{~mm}$
- Front panel dimensions: $285 \times 385 \mathrm{~mm}$
- Back panel dimensions: $260 \times 110 \mathrm{~mm}$

- KK-05 door station

- 1- subscriber door station with a camera
- Image sensor: $1 / 3^{\prime \prime}$ color
- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 6 IR LEDs (infrared)
- Electric door strike control with opening time adjustment 1 $\div 99$ s
- Backlit keyboard and signboards
- Opening the door with a PIN code
- Power supply from a $12 \div 15 \mathrm{~V}$ DC external power supply
- Output for the additional bolt release button
- Output for a timer that specifies temporary access

SLA-KK-05-SKP

mailbox with a video intercom

Mailbox

- Type of the mailbox: pass-through with video intercom
- Number of throw-in slots: 1
- Material: milled stainless steel
- Type of camera used: KK-05
- Drawer width: 265 mm
- Adjustment of the depth of the box: $190 \div 255 \mathrm{~mm}$
- Front panel dimensions: $285 \times 385 \mathrm{~mm}$
- Throw-in slot: $241 \times 45 \mathrm{~mm}$

KK-05 door station

- 1- subscriber door station with a camera
- Image sensor: $1 / 3^{\prime \prime}$ color
- Lens viewing angle: approx. 87°
- Resolution: 600 lines
- Lens: 3.6 mm
- Lens adjustment: vertical and horizontal $\pm 10^{\circ}$
- Backlight: 6 IR LEDs (infrared)
- Electric door strike control
- Backlit keyboard and signboards
- Opening the door with a PIN code
- Power supply from a $12 \div 15 \mathrm{~V}$ DC external power supply
- Output for the additional bolt release button
- Output for a timer that specifies temporary access

- Mailbox

- Type of the mailbox: pass-through with video intercom
- Number of throw-in slots: 1
- Front panel and back door material: polished stainless steel
- Drawer material: hot-dip galvanized steel
- Type of camera used
- Drawer width: 250 mm
- Adjustment of the depth of the box: $260 \div 410 \mathrm{~mm}$
- Front panel dimensions: $285 \times 332 \mathrm{~mm}$
- Back panel dimensions: $260 \times 110 \mathrm{~mm}$

- Door station

- Camera 2.0 Mpix
- Lens viewing angle 170°
- Built-in RFID reader (Unique 125 kHz)
- Master keychains for programming included
- Backlit information signboard
- 1 relay output (second relay via module B5)
- 12 V output for the power supply of the electric door strike
- LED night-time backlight (white light)
- Indicator of call start and bolt opening
- It supports electric door strikes and electromagnetic armatures
- Number of supported internal devices: 13
- It supports the addressed intercom feature

Mailbox

- Type of the mailbox: pass-through with video intercom
- Number of throw-in slots: 1
- Front panel and back door material
- Type of camera used: no data available
- Drawer width: 265 mm
- Adjustment of the depth of the box: $190 \div 255 \mathrm{~mm}$
- Front panel dimensions: $285 \times 385 \mathrm{~mm}$
- Throw-in slot: $241 \times 45 \mathrm{~mm}$

Door station

- Camera 2.0 Mpix
- Lens viewing angle 170°
- Built-in RFID reader (Unique 125 kHz)
- Master keychains for programming included
- Backlit information signboard
- 1 relay output (second relay via module B5)
- 12 V output for the power supply of the electric door strike
- LED night-time backlight (white light)
- Indicator of call start and bolt opening
- It supports electric door strikes and electromagnetic armatures
- Number of supported internal devices: 13
- It supports the addressed intercom feature
- 2-wire connection to the entire system

SLC-1401D-SKM
 mailbox with a video intercom

Mailbox

- Type of the mailbox: pass-through with video intercom
- Number of throw-in slots: 1
- Front panel and back door material: polished stainless steel
- Drawer material: hot-dip galvanized steel
- Type of camera used: no data available
- Drawer width: 250 mm
- Adjustment of the depth of the box: $260 \div 410 \mathrm{~mm}$
- Front panel dimensions: $285 \times 350 \mathrm{~mm}$
- Back panel dimensions: $260 \times 110 \mathrm{~mm}$

Door station

- Camera 2.0 Mpix
- Lens viewing angle 170°
- Built-in combination lock with a touch keyboard
- Backlit signboard for your name.
- Possibility to change the backlight of the keyboard and signboard
- LED night-time backlight (white light)
- Programming from the keyboard using codes
- 1 relay output (with relay via module B5)
- It supports electric door strikes and electromagnetic armatures
- 12 V output for the power supply of the electric door strike
- The number of internal devices: 13
- It supports the addressed intercom feature
- 2-wire connection to the entire system

Modular contactors
 for all applications

－Power supply $230 \mathrm{~V} \mathrm{AC}, 24 \mathrm{~V} \mathrm{AC}, 24 \mathrm{~V} \mathrm{AC/DC}$
－Connectors－25 A， $40 \mathrm{~A}, 63 \mathrm{~A}, 100 \mathrm{~A}$
－Classic version and with lever for manual control

Section

Time control

Chapter 21
Time relays 118
Chapter 22
Time controllers 129
Chapter 23
Control timers (programmable) 132

Chapter 21

Time relays

Purpose

Time relays are used for time control in industrial and home automation systems (such as ventilation, heating, lighting, signalling, etc.).

Product	Voltage power supply	Actuator element	Maximum load current	Mounting	Input Start/Reset	Number of functions	Description	Page
PCA-512 230 V	$195 \div 253 \mathrm{~V} \mathrm{AC}$	relay	8 A	for TH-35 rail	-	1	off delay	119
PCA-512 24 V	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	relay	8 A	for TH -35 rail	-	1	off delay	119
PCA-512 UnI	12ㄴ264 V AC/DC	relay	8 A	for TH-35 rail	-	1	off delay	119
PCA-514 duo	$\begin{gathered} 195 \div 253 \mathrm{VAC} \\ 21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{gathered}$	relay	8 A	for TH-35 rail	-	1	off delay	119
PCR-513 230 V	195 +253 V AC	relay	8 A	for TH-35 rail	-	1	on delay	119
PCR-513-16 230 V	195 2533 V AC	relay	16 A	for TH -35 rail	-	1	on delay	119
PCR-513 24 V	21 $127 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	relay	8 A	for TH-35 rail	-	1	on delay	119
PCR-513 UnI	12\%264 V AC/DC	relay	8 A	for TH-35 rail	-	1	on delay	119
PCR-515 duo	$\begin{gathered} \begin{array}{c} 195 \div 253 \mathrm{VAC} \\ 21 \div 27 \mathrm{VAC} / D C \end{array} \end{gathered}$	relay	8 A	for TH-35 rail	-	1	on delay	119
PCS-506	195 2533 V AC	relay	10 A	in flush mounted	-	8	multifunctional	123
PCS-516 duo	$\begin{array}{r} 195 \div 253 \mathrm{VAC} \\ 21 \div 27 \mathrm{VAC} / \mathrm{DC} \end{array}$	relay	8 A	for TH -35 rail	-	10	multifunctional	124
PCS-516 UnI	12ㄴ264 V AC/DC	relay	8 A	for TH-35 rail	-	10	multifunctional	124
PCS-516 AC	$85 \div 265 \mathrm{~V} \mathrm{AC}$	symistor	2 AAC	for TH-35 rail	-	10	multifunctional	124
PCS-516 dC	$9 \div 30 \mathrm{VDC}$	transistor	8 ADC	for TH-35 rail	-	10	multifunctional	124
PCS-517	$24 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	relay	16 A	for TH-35 rail	-	18	multifunctional	126
PCS-519 12 V	$11 \div 14 \mathrm{~V} \mathrm{AC/DC}$	$2 \times$ relay	$2 \times 8 \mathrm{~A}$	for TH -35 rail	-	10	multifunctional	124
PCS-519 duo	$\begin{gathered} 195 \div 253 \mathrm{VAC} \\ 21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{gathered}$	$2 \times$ relay	$2 \times 8 \mathrm{~A}$	for TH-35 rail	-	10	multifunctional	124
PCS-533	$9 \div 264 \mathrm{~V} \mathrm{AC/DC}$	relay	16 A	for TH-35 rail	-	programable	with wireless NFC communication	127
PCS-534	160 $2620 \mathrm{~V} \mathrm{AC/DC}$	4xrelay	$4 \times 16 \mathrm{~A}$	for TH-35 rail	-	programable	pulse-time, with USB port	131
PCU-504 UNI	12-264 V AC/DC	$2 \times$ relay	2×4 A	for TH-35 rail	-	3	contacts status back-up after a power failure	121
PCU-507 230 V	195 2523 V AC	$2 \times$ relay	$2 \times 8 \mathrm{~A}$	for TH-35 rail	-	2	cyclic operation	122
PCU-507 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$	$2 \times$ relay	$2 \times 8 \mathrm{~A}$	for TH -35 rail	-	2	cyclic operation	122
PCU-510 duo	$\begin{array}{r} 195 \div 253 \mathrm{VAC} \\ 21 \div 27 \mathrm{VAC} / \mathrm{DC} \end{array}$	$2 \times$ relay	2×8 A	for TH-35 rail	-	4	multifunctional	120
PCU-511 230 V	$195 \div 253 \mathrm{~V} \mathrm{AC}$	relay	8 A	for TH -35 rail	-	4	multifunctional	120
PCU-511 duo	$\begin{array}{r} 195 \div 253 \mathrm{~V} \mathrm{AC} \\ 21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{array}$	relay	8 A	for TH-35 rail	-	4	multifunctional	120
PCU-511 UNI	$12 \div 264 \mathrm{~V} \mathrm{AC/DC}$	relay	8 A	for $T H-35$ rail	-	4	multifunctional	120
PCU-518	$\begin{gathered} 195 \div 253 \mathrm{VAC} \\ 21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{gathered}$	relay	8 A	for TH-35 rail	-	4	multifunctional, with external potentiometer for time settings	121
PCU-520 230 V	$195 \div 253 \mathrm{~V} \mathrm{AC}$	$2 \times$ relay	$2 \times 8 \mathrm{~A}$	for TH-35 rail	-	2	cyclic operation	122
PCU-520 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$	$2 \times$ relay	$2 \times 8 \mathrm{~A}$	for $\mathrm{TH}-35$ rail	-	2	cyclic operation	122
PCU-520 UnI	$12 \div 264 \mathrm{~V} \mathrm{AC/DC}$	$2 \times$ relay	$2 \times 8 \mathrm{~A}$	for $\mathrm{TH}-35$ rail	-	2	cyclic operation	122
PCU-530	100 $-264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$3 \times$ relay	$3 \times 8 \mathrm{~A}$	for TH-35 rail	-	4	multifunctional	120
PO-405 230 V	$195 \div 253 \mathrm{~V} \mathrm{AC}$	relay	10 A	surface-mounted	-	1	off delay	128
PO-405 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$	relay	10 A	surface-mounted	-	1	off delay	128
PO-406	$195 \div 253 \mathrm{VaC}$	relay	10 A	in flush-mounted	-	1	off delay	128
PO-415 230 V	195 2523 V AC	relay	10 A	for TH-35 rail	-	1	off delay	128
PO-415 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$	relay	10 A	for TH-35 rail	-	1	off delay	128
STP-541	$24 \div 264 \mathrm{~V} \mathrm{AC/DC}$	$2 \times$ relay	2×16 A	for TH -35 rail	-	1	right/left operation	129
PCG-417 duo	$\begin{array}{r} 195 \div 253 \mathrm{VAC} \\ 21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{array}$	$2 \times$ relay	$2 \times 8 \mathrm{~A}$	for TH-35 rail	-	1	star/delta switch	130

Single-function

With operating function: off delay

PCA-512/PCA-514

Functioning
The contact remains in position 11-10 until the relay is switched on. After the supply voltage "U" is applied, the contact is switched to position 11-12 and the preset operating time is measured. After the set time has elapsed, the contact returns to position 11-10. To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

PCA-512

PCA-514 $230 \mathrm{~V}+24 \mathrm{~V}$

power supply	
PCA-512 230 V	195 2533 V AC
PCA-512 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
PCA-512 UNI	$12 \div 264 \mathrm{VAC} / \mathrm{DC}$
PCA-514 Duo	$195 \div 253 \mathrm{~V}$ AC
	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	8 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
working time (adjustable)	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$
activation delay	<50 ms
power indication	green LED
contact status indication	red LED
power consumption	0.8 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

With operating function: on delay

PCR-513/PCR-513-16/PCR-515

Functioning
After the supply voltage is applied, the contact remains in position 11-10 and the set operating time is measured. After the set time has elapsed, the contact switches to position 11-12.
To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

PCR-515 $230 \mathrm{~V}+24 \mathrm{~V}$

- Moving the rotary timer switch to position:
- ON - permanently closes the contact if the power supply is switched on.
- OFF - permanently opens the contact if the power supply is switched on.
- When the power supply is switched on, the system does not react to the change of time range settings.
- Operation with the newly set time range takes place after the power supply is switched off and back on.
- With the power supply switched on, it is possible to smoothly adjust the time within the preset time range.

Multifunctional

Functioning

- Off delay (A)

The contacts remain in NC position until the relay is switched on. After the supply voltage is applied, the contacts are switched to NO position and the preset operating time " t " is measured. After time " t " has elapsed, the contacts return to NC position. To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

- On delay (B)

Before and after the supply voltage is applied, the contacts remain in the NC position and the preset operating time " t " is measured. After the preset time has elapsed, the contacts switch to the NO position. To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

- Off delay - cyclic (C)

Off delay operating mode is carried out cyclically at equal intervals between the preset operating time and break time.

- On delay - cyclic (D)

On delay operating mode is carried out cyclically at equal intervals between the preset operating time and break time.

PCU-510 DUO 2×NO/NC contact

PCU-510 DUO 24 V

PCU-510 DUO 230 V power supply

power supply	$195 \div 253 \mathrm{~V} \mathrm{AC}$
maximum load current (AC-1)	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
contact	$2 \times 8 \mathrm{~A}$
working time (adjustable)	separated $2 \times \mathrm{NO} / \mathrm{NC}$
power indication	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$
contact status indication	green LED
power consumption	red LED
terminal	0.8 W
tightening torque	$0.5 \mathrm{~mm}^{2}$ screw terminals
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$\mathrm{IP20}$

PCU-511 1×NO/NC contact

PCU-511 24 V

PCU-511
230 V power supply

power supply	
PCU-511 230 V	195 2525 V AC
PCU-511 Duo	$195 \div 253 \mathrm{~V} \mathrm{AC}$
	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
PCU-511 UNI	$12 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	8 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
working time (adjustable)	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$
power indication	green LED
contact status indication	red LED
power consumption	0.8W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

PCU-530

$3 \times \mathrm{NO} / \mathrm{NC}$ contact

power supply	$100 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	$3 \times 8 \mathrm{~A}$
contact	separated $3 \times \mathrm{NO} / \mathrm{NC}$
working time (adjustable)	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$
power indication	green LED
contact status indication	red LED
power consumption	0.8 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature dimensions	$-25 \div 50^{\circ} \mathrm{C}$
mounting	1 module $(18 \mathrm{~mm})$
ingress protection	for TH-35 rail

- Moving the rotary timer switch to position:
- ON - permanently closes the contact if the power supply is switched on.
- OFF - permanently opens the contact if the power supply is switched on.
- When the power supply is switched on, the system does not react to the change of (I) time range settings.
- Operation with the newly set time range takes place after the power supply is switched off and back on.
- With the power supply switched on, it is possible to smoothly adjust the time within the preset time range.

power supply	195 253 V AC
	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	8A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
working time (adjustable)	$0.1 \mathrm{~s} \div 24 \mathrm{~h}$
power indication	green LED
contact status indication	red LED
power consumption	0.8W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20
external potentiometer (ZP-18)	
cable	$3 \times 0.42 \mathrm{~mm}^{2}, 1=70 \mathrm{~cm}$
box dimensions with cable gland	$83 \times 42 \times 30 \mathrm{~mm}$
height/diameter of the mandrel	$30 \mathrm{~mm} / \varnothing 6$
mounting hole	ø10
resistance	$100 \mathrm{k} \Omega$

(!) Visualization of operating modes presented on the previous page.

- Moving the rotary timer switch to position:
- ON permanently closes the contact if the power supply is switched on.
(! - OFF permanently opens the contact if the power supply is switched on.
- When the power supply is switched on, the system does not react to the change of time range settings;
- Operation with the newly set time range takes place after the power supply is switched off and back on;
- With the power supply switched on, it is possible to smoothly adjust the time within the preset time range.

With back-up after power failure

PCU-504 UNI

Functioning

The relay has an internal capacitor system, which acts as a power supply back-up and switches the contact after a power failure. The maximum back-up time is up to 10 minutes.

Functions

(A)

Closing of the contacts after switching on the power supply voltage. After a power failure, the contacts are closed for a set period of time.
(B)

On delay feature.
The back-up feature is not implemented.

After the power supply voltage is switched on, the contacts are closed after the preset time (on delay). After a power failure, the contacts are closed for a set period of time.

power supply	$12 \div 264 \mathrm{~V} \mathrm{AC/DC}$
maximum load current (AC-1)	$2 \times 4 \mathrm{~A}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
working time (adjustable)	$0.1 \mathrm{~s} \div 10 \mathrm{~min}$.
power indication	green LED
contact status indication	red LED
power consumption	0.8 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP2O

PCU-520

4-function

power supply	
PCU-520 230 V	195 2533 V AC
PCU-520 24 V	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
PCU-520 UNI	$12 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
working time (adjustable)	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$
break time (adjustable)	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$
power indication	green LED
contact status indication	red LED
power consumption	1.2 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- Off delay (A)

The contacts remain in positions 1-5 and 2-8 until the relay is switched on. When the power supply voltage is applied, the contacts are switched to position 1-6, 2-7 for the time t_{1}. After the time t_{1} has elapsed, the contacts return to position 1-5, 2-8 for the duration of time t_{2}. After the time t_{2} has elapsed, the contacts permanently return to position 1-6, 2-7. To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

- On delay (B)

When the power supply voltage is applied, the contacts remain in positions 1-5, 2-8 for the time t_{1}. After the time t_{1} has elapsed, the contacts switch to position 1-6, 2-7 for a duration of time t_{2}. After the time t_{2} has elapsed, the contacts return to position 1-5, 2-8. To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

- Off delay - cyclic (C)

Off delay operating mode is carried out cyclically intervals between the preset operating time
 and break time.

- On delay - cyclic (D)

On delay operating mode is carried out cyclically at the preset intervals between the operating time and break time.

PCU-507

2-function

power supply	
PCU- 507230 V	$195 \div 253 \mathrm{~V} \mathrm{AC}$
PCU- 50724 V	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
working time (adjustable)	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$
break time (adjustable)	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$
power indication	green LED
contact status indication	red LED
power consumption	0.8 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for $\mathrm{TH}-35$ rail
ingress protection	$\mathrm{IP20}$

Functions

- Off delay - cyclic

The contacts remain in position 2-3 and 11-10 until the relay is switched on. When the power supply voltage is applied, the contacts are switched to position 2-1, 11-12 for the time t_{1}. After the time t_{1} has elapsed, the contacts return to position 2-3, 11-10 for a duration of time t_{2}. The sequence of these switches is carried out cyclically.

- On delay - cyclic

When the power supply voltage is applied, the contacts remain in position 2-3, 11-10 for the time t_{1}. After the time t_{1} has elapsed, the contacts switch to position 2-1, 11-12 for a duration of time t_{2}. After the time t_{2} has elapsed, the contacts return to position 2-3 and 11-10. The sequence of these switches is carried out cyclically. A jumper on terminals 7-9 is used to select
 a specific function.

- no jumper installed - Off delay function;
- jumper installed between terminals - On delay function.
- When the power supply is switched on, setting the time range selection knob to:
- ON - permanently closes the contacts if the power supply is switched on.
- OFF - permanently open the contacts if the power supply is switched on.
- When the power supply is switched on, the system does not react to the change of time range and operating time settings.
- Operation with the newly set time range and operating mode takes place after the power supply is switched off and back on.
- With the power supply switched on, it is possible to smoothly adjust the time within the preset time range.

Multifunctional

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	10 A
contact	$1 \times \mathrm{NO}$
control pulse current	$<1 \mathrm{~mA}$
working time (adjustable)	$0.1 \mathrm{~s} \div 24 \mathrm{~h}$
power consumption	0.8 W
terminal	$4 \times \mathrm{DY} 1 \mathrm{~mm}^{2}, \mathrm{l}=10 \mathrm{~cm}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$\varnothing 55, \mathrm{~h}=13 \mathrm{~mm}$
mounting	in flush mounted box $\varnothing 60$
ingress protection	IP20

The selection of a specific time range and relay operation function means setting the appropriate combination of switches (the black field in the diagram indicates the position of the switch).

Bistable relay with automatic staircase lighting time switch. One press of the START button switches on the relay for a set time. Another START pulse during the time measurement causes the relay to be switched off. Pressing and holding the control button for more than 1 second will switch the lighting on permanently until the next pulse is given, which will switch off the relay.

Generator with a duty cycle of 50%, starting from the switch-on state.
It is active when the START voltage is applied. When the START signal is disconnected, it breaks the operation.

On delay of the relay using the START signal. When the relay is switched on, the next START pulse switches it off. The next START pulse causes the time to be measured again and the relay to be switched on. The interval between the trailing edge of the deleting signal and the rising edge of the START signal causing subsequent time measurement - minimum 0.5 sec .

Generating a single pulse with time " t " by the rising edge of the START signal.
During the time measurement, the system does not react to START pulses.

Generating a single pulse with time " t " by the trailing edge of the START signal. During the time measurement, the system does not react to START pulses.

Off delay with back-up feature. The rising edge of the START signal causes the relay to be switched on, while the trailing edge causes the start of time measurement. Applying the START signal during the time measurement starts the operating cycle from the beginning.

Off delay and on delay with a back-up feature. If the START voltage is shorter than 45 s , the system ignores it, if it is longer than 45 s , then after this time the relay switches on and time measurement begins with the START signal trailing edge. If during the time measurement another START pulse occurs, the trailing edge of this signal will cause the time to be measured from the beginning (for example, for ventilation: short term activation of the lighting does not switch on the fan, switching on the lighting for longer than 45 seconds switches the fan on).

Time ranges

Setting the time range switch to ON when the power supply is switched on causes the relay to be permanently switched on.
Setting the time range switch to OFF when the power supply is switched on causes Switch relay to be permanently switched off.

Operating features

When the power supply is switched on, the system does not react to the change of operating mode and time range settings.
Operation with the newly set operating mode and time range takes place after the power supply is switched off and back on.

PCS-516 / PCS-516AC / PCS-516 DC / PCS-519

10-function, with "Start" and "Reset" control inputs

PCS-516 AC

PCS-516 DC

Features

PCS-516 AC

- Semiconductor output (symistor) for controlling loads supplied with AC voltage;
- Zero voltage switching on, zero current switching off - low surge when switched on;
- No problems with wear and tear of the relay contacts - dedicated for operation with high switching frequency;
- Output separated from input - can be powered/controlled by one phase and the receiver can be connected to another phase.

PCS-516 DC:

- Semiconductor outputs (transistor in the open collector system - OC);
- No problems with wear and tear of the relay contacts - dedicated for operation with high switching frequency.

PCS-516 DUO 230 V

PCS-519 DUO 230 V

PCS-516 DUO 24 V

PCS-519 DUO 24 V

PCS-516 UNI

PCS-519 12 V

	PCS-516 AC	PCS-516 DC	PCS-516 DUO	PCS-516 UNI	PCS-519 12 V	PCS-519 DUO
Power supply	$85 \div 265$ V AC	$9 \div 30 \mathrm{~V}$ DC	$195 \div 253 \mathrm{~V} \mathrm{AC} / 21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$12 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$11 \div 14 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$195 \div 253 \mathrm{~V} \mathrm{AC} / 21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
Actuator	symistor	transistor	relay	relay	$2 \times$ relay	$2 \times$ relay
Number and type of output contacts	$1 \times \mathrm{NO}$	$1 \times 0 \mathrm{C}$	separated $1 \times \mathrm{NO} / \mathrm{NC}$	separated $1 \times \mathrm{NO} / \mathrm{NC}$	separated $2 \times \mathrm{NO} / \mathrm{NC}$	separated $2 \times \mathrm{NO} / \mathrm{NC}$
Maximum load	2 A (AC-1)	8 A	8 A ($\mathrm{AC}-1$)	8 A (AC-1)	$2 \times 8 \mathrm{~A}(\mathrm{AC}-1)$	$2 \times 8 \mathrm{~A}(\mathrm{AC}-1)$
Time setting range	$0.1 \mathrm{~s} \div 576 \mathrm{~h}$					
Signalling activation	green LED					
Contact status indication	red LED					
Power consumption	0.6 W	0.6 W	0.8 W	0.8 W	0.8 W	0.8 W
Working temperature	$-25 \div 50^{\circ} \mathrm{C}$					
Terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals					
Tightening torque	0.4 Nm					
Dimensions	1 module (18 mm)					
Mounting	for TH-35 rail					
Ingress protection	IP20					

To select a specific time range and relay operating function, set the appropriate combination of rotary coding switches.
When RESET voltage is applied during the execution of the given function, it causes:

- for functions A, B, C, D, F: implementation of the operating mode from the beginning;
- for functions F, G, H, I: return of the relay to the initial state and waiting for the START signal;
- for function K: the relay contact to be permanently closed;

When the power supply is switched on, setting the time range rotary switch to position:

- ON - causes the contact to be permanently closed;
- OFF - causes the contact to be permanently open.
(A)

(B)

(C)

On delay. After the supply voltage is switched on (the green LED U is on), the contact remains in opened position [3-5] and the set operating time " t " is measured. After the preset time has elapsed, the contact switches to closed position [3-7] (the red LED R is on). To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on or apply the signal at the RESET input.

Off delay. The contact remains in opened position [3-5] until the relay is switched on. After the supply voltage is switched on (the green LED U is on), the contact is switched to closed position [3-7] and the set operating time " t " is measured (the red LED R is on). To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on or apply the signal at the RESET input.

On delay - cyclic. On delay operating mode is carried out cyclically at equal intervals between the preset operating time and break time.

Off delay - cyclic. Off delay operating mode is carried out cyclically at equal intervals between the preset operating time and break time.

Generating pulse 0.5 s after the preset time "t".

Generating a single pulse with time " t " by the rising edge of the START signal. During the time measurement, the system does not react to START pulses.

Generating a single pulse with time " t " by the trailing edge of the START signal. During the time measurement, the system does not react to START pulses.

Off delay with back-up feature. The rising edge of the START signal causes the relay to be switched on, while the trailing edge causes the start of time measurement. Applying the START signal during the time measurement causes the cycle to be extended by another time " t " by the trailing edge.

Generating a single 0.5 s pulse after time " t " by the triggered trailing edge of the START signal.

The " t " break time in the closing of the contact triggered by the rising edge of the START signal.

18-function

Time setting range ($0.25 \mathrm{~s} \div 100 \mathrm{~h}$) allows for a very precise adjusting of the contact closing, such as 2 h 13 min. 27 s .

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
control pulse current	$<1 \mathrm{~mA}$
time setting range	$0 \div 100 \mathrm{~h}$
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules $(35 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$\mathrm{IP2O}$

P00The state of "nactivity"

POI

After the supply voltage is applied, the contact remains in position 1-6 (off) and the set delay time " t " is measured. After the set time " t " has elapsed, the contact switches to position 1-5 (on). To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

P02

The contact remains in position 1-6 (off) until the voltage is switched on. After the supply voltage is applied, the contact is switched to position 1-5 (on) and the set time " t " is measured. To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

P03

On delay operating mode is carried out cyclically at the preset intervals of the operating time " t_{1} " and break time " t_{2} " (on).

P04

Off delay operating mode is carried out cyclically at the preset intervals of the operating time " t_{1} " (on) and break time " t_{2} ".

P05

When the power supply voltage is applied, the contact remains in position 1-6 (off) and the preset delay time " t_{1} " is measured. After the time t_{1} has elapsed, the contacts switch to position 1-5 (on) for a duration of time " t_{2} ". To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

P05

After the START signal is given, the contact is switched to position 1-5 (on). After the START signal loss, the contact is backed-up for the set time " t ". While measuring time " t ", the relay does not react to subsequent pulses of the START signal.

P07

After the START signal is given, the contact is switched to position 1-5 (on). After the START signal loss, the contact is backed-up for the set time " t ". The reappearance of the START signal during the time " t " measurement interrupts its countdown and the contact remains switched on (position 1-5). The second loss of the START signal triggers the countdown of the contact back-up time " t ".

On delay of the contact (position 1-5) after time " t " by the rising edge of the START signal. While measuring time " t ", the relay does not react to subsequent pulses of the START signal. After the loss and reappearance of the START signal, the contact is disconnected (position 1-6) for the time "t".

Triggering the delay time " t_{1} " (position 1-6) by the rising edge of the START signal. Triggering the time of closing " t_{2} " (position 1-5) occurs always after START signal loss, but not earlier than after time " t_{1} ". After counting down the time " t_{1} ", the contact is switched on (position 1-5) for the time " t_{2} ".
$P 10$

Closing of the contact (position 1-5) during the time "t" countdown from the value set to "zero" only during the START signal. The loss of the START signal stops the countdown. After the START signal appears again, the countdown of the remaining time " t " continues. Supply voltage loss "zeroes" the remaining time " t ". After the power supply voltage and the START signal appear, the time " t " will be counted down again from the set value.

PII

Closing of the contact (position 1-5) for a time " t " by the trailing edge of the START signal. While measuring time " t ", the relay does not react to subsequent pulses of the START signal.

P12

Closing of the contact (position 1-5) for a time " t " by the trailing edge of the START signal. The reappearance of the START signal and its loss during the time " t " measurement triggers the countdown of the time " t " from the beginning.

$p 13$

Closing of the contact (position 1-5) for a time " t " by the rising edge of the START signal. Reapplying of the START signal during the time " t " countdown stops it and disconnects the contact (position 1-6).

914

Closing of the contact (position 1-5) for a time " t " by the rising edge of the START signal. The reappearance of the START signal during the time " t " measurement triggers the countdown of the time " t " from the beginning.

P15

Closing of the contact (position 1-5) for a time " t " by the rising edge of the START signal and it subsequent closing for a time " t_{2} " by the trailing edge of the START signal.
PIG

Closing of the contact (position 1-5) for a time " t_{1} " by the rising edge of the START signal. While measuring time " t ", the relay does not react to subsequent pulses of the START signal.

P17

On delay of the contact (position 1-5) after time " t " by the triggered rising edge of the START signal. Another START signal opens the contact (position 1-6) for the time " t ". The reappearance of the START signal during the time " t " measurement triggers the countdown of the time " t " from the beginning.

PIG

On delay of the contact (position 1-5) after time " t " by the triggered rising edge of the START signal. While measuring time " t ", the relay does not react to subsequent pulses of the START signal. After a power failure, the contact will be open (pos. 1-6). To execute the operating mode of the relay again you need to switch off the power supply voltage and switch it back on.

Programmable

PCS-533 UNI

Purpose

The PCS-533 module is a programmable time relay that enables switching on and off of the relay as well as switching the relay as a function of time and as a function of control signals set by 2 inputs.

NFC

Functioning

The operation of the relay is carried out in accordance with the program prepared by the user, using a dedicated, free of charge application for a smartphone with the Android system and uploaded to the controller via the NFC wireless communication system. Up to 200 consecutive operations or conditions can be defined in the program.

power supply	$9 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
control pulse current	$<1 \mathrm{~mA}$
working time (adjustable)	$0.1 \mathrm{~s} \div 24 \mathrm{~h}$
power indication	green LED
contact status indication	red LED
power consumption	0.8 W
terminal	$0.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP 20

PCS533 Configurator

Functions

- Preparing the program as a list of consecutive commands. Each command is symbolized by an icon. Pressing a tile with a command allows you to edit the details (such as operation time, expected input signal, etc.);
- Easily add, move, and delete program commands (by dragging and dropping tiles);
- A set of templates (in the form of diagrams) - ready-made programs with typical functions of the time relays;
- Write and read programs to and from a file. Programs can be shared via e-mail, Bluetooth, network drives, etc.
- Automatic program backup - each relay has its own ID. The application keeps a complete history of programs loaded into the relay;
- Mass programming mode - one program can be loaded to multiple relays (without the need to connect power supply).

Command list

- Output - setting the state of the relay (on, off, switch) for a specified time or permanently;
- Input A/B - waiting for a specified state to appear on the input;
- Return to - return to the previous command. This allows you to repeat a sequence of commands (infinitely or a given number of times);
- Pause - pauses the execution of the program for a specified time;
- Stop - stops the execution of the program (until the power supply is switched back on or reset);
- Reset - start the execution of the program from the beginning;
- Special input A/B - commands, which configure the inputs in such a way that regardless of the state of the program, the Pause or Reset command can be executed.

PCS Configurator app

With off delay (fan)

Purpose

Time relays with off delay are used to maintain the power supply of the controlled receiver for a specified period of time after the loss of the control voltage, for example in bathroom ventilation systems, where it is necessary to maintain the fan operation (switched on along with the lighting) for a specified period of time after said lighting has been switched off.

Functioning

When the control voltage "S" is applied to the relay, the relay is triggered and the voltage on the controlled receiver is switched on (such as a fan). After a loss of control voltage, the operation of the receiver is backed-up for the time " t " (set with a potentiometer). After the time " t ", the relay will be switched off. If the control voltage " S " is applied again before the set time has elapsed, the relay will execute its function from the beginning.

P0-405

power supply	
PO-405 230 V	$195 \div 253 \mathrm{~V} \mathrm{AC}$
PO-405 24 V	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum load current (AC-1)	10 A
contact	$1 \times \mathrm{NO}$
backup time	$1 \div 15 \mathrm{~min}$.
power indication	green LED
operation indication	red LED
power consumption	0.56 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface
ingress protection	IP20

P0-406

P0-415

power supply	
PO-415 230 V	$195 \div 253 \mathrm{~V} \mathrm{AC}$
PO-415 24 V	$21 \div 27 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	10A
contact	separated 1×NO/NC
backup time	$1 \div 15 \mathrm{~min}$.
power indication	green LED
operation indication	red LED
power consumption	0.56W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Time controllers

STP-541 time controller, type: right/left operation

Purpose

The programmable controller is used to controlling technological processes in industrial automation systems, in which there is a need for temporary, cyclic, alternating switching of receivers with forced time breaks between successive switchings.

Functioning

After the power supply is switched on, the controller switches to a cyclical program consisting of 4 steps. In the first step, the contact is switched to position 1-5 for the time " t_{1} ". In the second step, after the time " t_{1} " the contact will return to position 1-6 for the time " t_{2} ". In the third step, after the time " t_{2} ", the second contact is switched to position 2-7 for the time " t_{3} ". In the subsequent step, after the time " t_{3} " the contact is switched to position $2-8$ for the time " t_{4} ". And in the last step after the time " t_{4} ", the controller will start the program cycle from the beginning (from the time " t_{1} "). The cycle will be repeated according to the programmed number of repetitions or infinitely when working in a loop. Loss of the power supply voltage for longer than 1 second will stop the controller program execution. After restarting the power supply, the controller will start the program from the beginning with the programmed number of cycle repetitions.

power supply	$24 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum load current (AC-1)	$2 \times 16 \mathrm{~A}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
time settings $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}$	$1 \mathrm{~s} \div 100 \mathrm{~h}$
time setting accuracy	1 s
number of cycle repetitions	$1 \div 999999$
	or in an infinite loop
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature dimensions	$-20 \div 50^{\circ} \mathrm{C}$
mounting	2 modules $(35 \mathrm{~mm})$
ingress protection	for TH-35 rail

Wiring diagram

Diagram of the contactor switching system of the following type: right/left operation
SG - main contactor
SP - "right" system contactor
SL - "left" system contactor

"Star"/"delta" switch

PCG-417 DU0

to control the "star"/"delta" contactor switching system

Purpose

Motor starters with "star" to "delta" switch are used when the power supply does not allow short-term high-current loads or when the start time is long. Induction motors with a "delta" winding draw a very high current at start-up, up to 8 times the rated current. By using the "star" winding connection during startup, the current and the starting torque are reduced 3 times. Motors with lower power are switched by mechanical switches, motors with higher power require a contactor switch. Time switches are used for controlling the contactors. These are usually reversible relays (off delay) with an electromagnetic relay $1 \times \mathrm{NO} / \mathrm{NC}$ (change-over contact). However, they are not "safe". Quick switching does not guarantee that the contactor of the "star" system will be able to disconnect before the contactor of the "triangle" system is switched on or that the electric arcs on the contacts of the contactor of the "star" system will be extinguished. This leads to a short-circuit. To prevent this, use the PCG-417 time relay.

Functioning

The PCG-417 relay has a special system of two electromagnetic relays, which eliminates the risk of switching on two contactors at the same time. Each relay controls the corresponding contactor. When switching from "star" to "delta", the first relay disconnects the "star" contactor, a forced time break occurs and the second relay switches on the "delta" contactor.
After the power supply is switched on, the "star" contact will be switched to position 7-9 for the preset start-up time " t_{1} ". The "delta" contact remains in position 10-11. After the startup time " t_{1} " has elapsed, the "star" contact is switched to position 7-8 (the "delta" contact still remains in position 10-11) and the switching interval is interrupted at the set time " t_{2} ". After the time " t_{2} " has elapsed, the "delta" contact is switched to position 10-12 and remains in this state until the supply voltage is disconnected (the "star" contact remains in position 7-8).

power supply	$195 \div 253 \mathrm{~V} \mathrm{AC}$
	$21 \div 27 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
contact	$2 \times \mathrm{NO}$
"star" start-up time	$1 \div 1000 \mathrm{~s}$
switching time (adjustable)	75 or 150 ms
power indication	green LED
operation indication	red LED
power consumption	0.8 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$\mathrm{IP2O}$

Wiring diagram

SG - main contactor
S Δ - "delta" system contactor Sx - "star" system contactor

Purpose

The PCS-534 controller is designed for automation systems, in which there is a need to simultaneously control a group of receivers in an established ON/OFF combination, forced by successive pulses applied manually or automatically to the control input or according to time intervals between successive switchings.

power supply	160 $\div 260 \mathrm{VAC} / \mathrm{DC}$
output load current	$4 \times 16 \mathrm{~A}$
contact	$4 \times \mathrm{NO}$
input voltage tolerance	$160 \div 260 \mathrm{~V} \mathrm{AC/DC}$
time settings $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{4}$	$1 \mathrm{~s} \div 99 \mathrm{~h} 59 \mathrm{~min} .59 \mathrm{~s}$
time setting accuracy	1 s
number of cycle repetitions	$1 \div 999999$ or in an infinite loop
maximum number of sequences	125
communication port	miniUSB
power consumption	1.3 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	5 modules (87.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functioning

The sequential relay has 4 separate outputs OUT1 \div OUT4 and 4 independent signal inputs IN1 \div IN4. The open/closed contact system is set sequentially according to the preset program. The contacts are switched to the next state after the next pulse at the control input or automatically, according to the time schedule.
The contact sequence, time schedule, and operating options are set using the configuration software on the PC. Connection to the controller via USB cable.

Operating modes:

- Pulse - programmed contact sequences are executed after successive pulses of control input IN1.

The first pulse switches from sequence 0 to sequence 1 and onwards after the subsequent pulses. After executing the last sequence, the relay executes the program from sequence 0 or 1 for the "autostart" option;

- Time-controlled - contact switching is carried out automatically according to the time schedule. The pulse at the IN1 input switches from sequence 0 to sequence 1 and continues to switch automatically after the preset time. After the last sequence has been executed, the relay returns to sequence 0 and waits for a control pulse at input IN1 or continues to execute the program from sequence 1 onwards ("autostart" option).
- Sequence 0 - output state of the contacts (0000) after switching on the power supply (fixed option, unchanged by the user).

Additional options:

- Autostart - automatic start option. In the pulse mode, it means an automatic transition to sequence 1 after the power supply is switched on. In time mode, it means an automatic start of operation according to the time schedule.

Input functions:

- IN1 ("Start"):
- pulse: applying the pulse switches the contacts to the next state;
- time: applying the pulse starts the time schedule;
- IN2 ("Pause"):
- pulse: blocks switching to the next sequence despite successive pulses to IN1;
- time: stops the countdown time for switching to the next state;
- IN3 ("Continuation"):
- pulse: restores the reaction to IN1 input pulses;
- time: continuation of the countdown in the stopped sequence;
- IN4 ("Reset"):
- pulse: immediately stop the program being executed and return to sequence 0 and wait for a restart. In the "Autostart" option it executes the program from sequence 1;
- time: immediately stop the program being executed and return to sequence 0 and wait for a start signal at IN1. In the "Autostart" option it executes the program from sequence 1.

Control timers (programmable)

Purpose

The programmable control timer is used to time control devices in a home or industrial automation systems according to an individual time program set by the user.

Product	Type	Number of channels	Actuator element	Page
PCZ-521.3	programmable, weekly	1	relay	133
PCZ-521.3 PLUS	programmable, weekly	1	relay	132
PCZ-522.3	programmable, weekly	2	relay	133
PCZ-523.2	pulse (bell)	1	relay	133
PCZ-524.3	astronomical	1	relay	135
PCZ-525.3	astronomical with a night-time break	1	relay	136
PCZ-525.3 PLUS	astronomical with a night-time break	1	relay	136
PCZ-526.3	astronomical with a night-time break	2	relay	137
PCZ-528.3	universal, programmable timer	1	relay	137
PCZ-529.3	yearly	1	relay	133
PCZ-531A10	programmable, weekly	1	analog output	49
PCZ-531LED	programmable, weekly	transistor	49	

Weekly programmable timer - is used to time control devices in a home or industrial automation system according to an individual time program set by the user. In this type of timer, the minimum time of relay activation is 1 minute.
Pulse timer (bell timer) - used for time control of devices in a home or industrial automation systems according to an individual time program set by the user, and is programmed on the principle of setting the switch-on time and pulse duration. This type of timer allows you to program the relay to be switched on from 1 second.
Astronomical clock - used to switch on and off lights or other electric appliances, according to the hours of sunset and sunrise. Switch on and switch off points are calculated on the basis of information about the current date, time and geographical coordinates of the place of the timer installation. In this type of clock, it is not possible to "manually" program the hours of switching on and off.
Yearly timer - used to time control devices in a home or industrial automation systems according to an individual time program set by the user in the yearly cycle. This type of timer allows you to program the relay to be switched on and off on a specific day of the year and at a specific time.

ON/OFF type: weekly

PCZ-521.3 PLUS 1-channel

Functions

- 500 memory cells;
- NFC wireless communication;
- A backlit LCD display with adjustable brightness level;
- An external button for manual control of the relay can be connected;
- A memory of the relay status in manual mode;
- Free PCZ Configurator app for your smartphone (Android);
- Operating modes:
- automatic - the switching on of the receiver is determined by the operating program of the controller;
- semi-automatic - operation in automatic mode can be temporarily interrupted and the status of the relay can be set manually;
- manual - the status of the relay can be set manually;
- Battery back-up of the timer operation and an indication of the battery charge status.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16A
contact	separated $1 \times$ NO/NC
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
time program setting accuracy	1 min .
program memory cells	500
	(250 pairs of ON/OFF commands)
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

[^10]
PCZ-521.3
 1-channel

Functions

- 500 memory cells;
- Relays status memory;
- Battery charge level;
- LCD contrast setting;
- NFC wireless communication;
- PCZ Configurator app for your smartphone.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16A
contact	separated $1 \times$ NO/NC
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
time program setting accuracy	1 min .
program memory cells	500
power consumption	1,5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

* battery life addicted to weather conditions and frequency of mains failure

PCZ-522.3 2-channel

Functions

- 2 independent channels, separately programmable;
- 500 memory cells + relay status memory;
- Battery charge level;
- LCD contrast setting;
- NFC wireless communication;
- PCZ Configurator app for your smartphone.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	$2 \times 16 \mathrm{~A}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
time program setting accuracy	1 min.
program memory cells	2×250
power consumption	1.5 W
terminal	
	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
tightening torque	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
working temperature	0.5 Nm
dimensions	$-20 \div 50^{\circ} \mathrm{C}$
mounting	2 modules (35 mm)
ingress protection	for TH-35 rail

* battery life addicted to weather conditions and frequency of mains failure

ON/OFF type: pulse (bell)

PCZ-523.2 1-channel, with 2 programmable lines

Functions

- The timer switches the device on at a preset time and switches it off after a preset time (pulse) in cycles: daily, weekly, working days (Mon.․Fri.) or weekend (Sat., Sun.)
- Pulse length: $1 \mathrm{~s} \div 100 \mathrm{~min}$.
- The relay has 2 independently programmable, switchable program lines controlling the alternatively connected receiver.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
backup time clock operation	6 years*
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
time setting accuracy	1 min .
pulse length	$1 \mathrm{~s} \div 100 \mathrm{~min}$.
program memory cells	250
	(2×60 ON/HOLD commands/program)
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20
* battery life addicted to weather conditions and frequency of mains failure	

PCZ-529.3

1-channel

Functioning

The timer allows you to establish overriding seasonality in the automation system. It switches devices on and off according to the programmed dates in a yearly cycle. Can be set to the switch on for only one, selected day of the year. Additionally, it is possible to set the time of switching on and off, which means providing a specific time and minute for the set date.

Functions

- 500 memory cells;
- Relays status memory;
- Battery charge level;
- LCD contrast setting;
- NFC wireless communication;
- PCZ Configurator app for your smartphone.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
time program setting accuracy	1 min .
program memory cells	500
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

* battery life addicted to weather conditions and frequency of mains failure

New features in the PCZ-xxx. 3 series (PCZ-521.3, PCZ-521.3 PLUS, PCZ-522.3, PCZ-529.3)

NFC wireless communication - wireless reading and writing of the control timer configuration via an Android phone equipped with the NFC communication module.
PCZ Configurator app - free app for Android phones and tablets equipped with NFC wireless communication module.

Functions

- Setting the timer configuration in offline mode (without the connection with the timer);
- Reading and writing the configuration to the controller;
- Quick programming of multiple controllers with one configuration;
- Reading and writing the configuration to the file;
- Configuration sharing via e-mail, Bluetooth, network drives;
- Unique identification of the connected timer and the ability to give the devices their own names;
- Automatic backup of the configuration;
- Restore previous configuration (in conjunction with the unique identifier of each timer);
- Set the time and date based on the watch on your phone.

Application is available on:

https://play.google.com/store/apps/ details?id=pl.com.fif.clockprogramer

Astronomical

Purpose
An astronomical clock is used to switch on and off lights or other electric appliances according to the daily hours of sunset and sunrise.

Functioning

The astronomical clock, based on information about the current date and geographical coordinates of the place of its installation, automatically determines the daily, program points of switching the lighting on and off. The exact time of switching on and off is determined remains the calculation of the position of the sun relative to the horizon and enables the selection of one of the three control options (the moment of switching on and off of the lighting is set independently):

- Astronomical sunset and sunrise;
- Civil twilight/civil dawn
- Adjustment - individual correction of software switch-on and switch-off points by the user: angular or time.

Functions

- Automatic operation - automatic operation according to programmed switch-on and switch-off points
- Semi-automatic operation - possibility to manually switch the contact state during automatic operation. The change will be effective until the next switch on/off resulting from the automatic operation cycle.
WARNING!
In semi-automatic mode, the contact position is opposite to the one resulting from the program cycle (for example, at night the contact is switched off, and during the day it is switched on). Semi-automatic operation only works until the end of the current automatic operation cycle, for example: entering the semi-automatic mode during the day will switch on the light until the programmed time of switching on resulting from the astronomical cycle is reached. The timer then returns to automatic operation (and the light remains on until dawn).
- Manual operation - permanent switching on and off of the contact.
- Coordinate code - assigned geographical coordinates for specified cities to facilitate location selection. Places and time zones of about 1500 places from 51 countries of the world are defined in memory.
- Adjustment - acceleration or delay of switching on/off times in relation to astronomical sunrise and sunset points:
$\pm 15^{\circ}$ - angular correction for the moment of switching on in relation to the position of the center of the sun against the horizon; $\pm 180 \mathrm{~min}$. - time correction for the moment of switching on as a time shift in relation to sunrise/sunset.
- Automatic change of time - change of time from daylight saving time to standard time. Ability to work with or without automatic change. The controller is equipped with a time zone selection function so that the switching time is consistent with the local time.
- Preview of date, program ON/OFF points and location - ability to view date, the current time of contact switching and set location.
- Time correction of the timer - the setting of the monthly second correction of the system clock.
- Battery charge indicator - the controller is equipped with control of the battery status that maintains the timer operation in case of main power failure. If the battery is low, you will be notified if it needs to be replaced.
- LCD brightness correction - change the contrast of the display to give a clear LCD reading for different viewing angles.
- Relays status memory - the relay status set in manual mode is also stored in memory after a power failure.

Without the programmable night-time break

PCZ-524.3 1-channel

Functions

- 1-channel;
- Relays status memory;
- Battery charge level;
- LCD contrast setting;
- NFC wireless communication;
- PCZ Configurator app for your smartphone.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

With the programmable night-time break

Functioning
The ability to set a night-time break, which means switching off the controlled receiver for a specified time "t" (for example, from 21.15 to " t_{1} ", then from " t_{2} " to 04.20) between the points of program switchings.

PCZ-525.3 PLUS 1-channel

Functions

- NFC wireless communication;
- A backlit LCD display with adjustable brightness level;
- An external button for manual control of the relay can be connected;
- Ability to connect an external brightness sensor (probe Plus): adjustment of the switch-on/off moment to real conditions (for example: on a cloudy day the light will switch on earlier than it would based on the astronomical settings);
- Free PCZ Configurator app for your smartphone (Android);
- A memory of the relay status in manual mode;
- Operating modes:
- automatic - the switching on of the receiver is determined by the operating program of the controller;
- semi-automatic - operation in automatic mode can be temporarily interrupted and the status of the relay can be set manually;
- manual - the status of the relay can be set manually;
- Battery back-up of the timer operation and an indication of the battery charge status.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
power consumption	1.5 W
terminal	
	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
tightening torque	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
working temperature	0.5 Nm
dimensions	$-20 \div 50^{\circ} \mathrm{C}$
mounting	
ingress protection	2 modules $(35 \mathrm{~mm})$

* battery life addicted to weather conditions and frequency of mains failure

PCZ-525.3 1-channel

Functions

- 1-channel;
- Programmable night-time break;
- Relay status memory + battery charge level;
- LCD contrast setting;
- NFC wireless communication;
- PCZ Configurator app for your smartphone.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16A
contact	separated $1 \times$ NO/NC
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

* battery life addicted to weather conditions and frequency of mains failure

An additional option of manually setting the "fixed" switch-on time, which allows to anticipate sunset and switch on the lighting atthe same time on a daily basis, regardless of the settings. Similarly, it is possible to set a "fixed" switch-off time to extend the lighting operation time after sunrise.

- 2-channel;
- A night-time break programmable separately for each channel;
- Relays status memory;
- Battery charge level;
- LCD contrast setting;
- NFC wireless communication;
- PCZ Configurator app for your smartphone.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	2×16 A
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

An additional option of manually setting the "fixed" switch-on time, which allows to anticipate sunset and switch on the lighting at
(!) the same time on a daily basis, regardless of the settings. Similarly, it is possible to set a "fixed" switch-off time to extend the lighting operation time after sunrise.

PCZ-528.3 1-channel, universal programmable timer

Functions

- 256 relay on/off programmes;
- Each programme can be executed in one of the seven date ranges defined in the annual cycle;
- Up to 32 holidays can be entered and it is possible to select which programmes will be executed on holidays;
- For each of the work programmes, it can be independently determined whether the programme is executed in an hourly cycle (fixed hour and minute) or astronomical cycle (linked to the position of the sun in relation to the horizon);
- In each of the astronomical programmes, the on/off offset relative to the selected astronomical point can be set independently (e.g. on one hour before sunset, off two hours after dusk);
- For each programme, it is possible to freely select on which days of the week it will be executed;
- Possibility of programming the timer using the free PCZ Configurator mobile app using the NFC* short-range radio communication mechanism;
- Possibility to protect the clock settings with a PIN code;
- Advanced operating time counter for measuring the time of time the receiver is switched on:
- on the current day and month,
- monthly, over the last 12 months,
- total since the first start-up of the clock,
- Auxiliary, erasable, operating time counter;
- Possibility of limiting the total time of activation of the receiver (up to a maximum of 99999 hours);
- Control input for connecting externalgo button;
- Backlit LCD display with adjustable level of brightness and contrast brightness and contrast;
- Replaceable 2032-type battery for maintaining clock operation in case of power failure**.

[^11]

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
backup time clock operation	6 years*
battery type	2032 (lithium)
backup time display operation	no
accuracy of the clock	1 s
time error	$\pm 1 \mathrm{~s} / 24 \mathrm{~h}$
power consumption	1.5 W
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

[^12]NFC wireless communication - wireless reading and writing of the control timer configuration via an Android phone equipped with the NFC communication module.
PCZ Configurator app - free app for Android phones and tablets equipped with NFC wireless communication module.

Functions

- Setting the timer configuration in offline mode (without the connection with the timer);
- Reading and writing the configuration to the controller;
- Quick programming of multiple controllers with one configuration;
- Reading and writing the configuration to the file;
- Configuration sharing via e-mail, Bluetooth, network drives;
- Unique identification of the connected timer and the ability to give the devices their own names;
- Automatic backup of the configuration.

Combined with the unique identifier of each timer, the previous configuration can easily be restored;

- Set the time and date based on the watch on your phone;
- Set the geographical coordinates of the place of the timer installation using the GPS function of your phone.

Related devices

Lighting brightness controls with weekly timer

PCZ-531LED

with LED $9 \div 30 \mathrm{~V}$ control output

PCZ-531A10

with $0 \div 10 \mathrm{~V}$ analog output

More information on p. 49

Section VI

 Programmable controllers
Chapter 24

FLC programmable controllers ... 140
Chapter 25
MAX system

FLC programmable controllers

Purpose

FLC is a series of compact programmable relays that can replace many individual electronic modules, which perform the functions of meters, relays and time controllers. The devices are perfectly suitable for any switchgear, supplementing or replacing specialized devices. Each central unit is equipped with an LCD display and a keypad to enable the implementation of a functional operator panel. The built-in real-time clock with battery back-up and with the calendar and astronomical functions allows you to create complex clock applications. Communication functions including Ethernet (FLC18-ETH controller) enable connection of controllers to Modbus RTU/TCP network and remote access to the controller via configurable server WWW. The capabilities of FLC18 controllers can be further extended with up to $16 \mathrm{I} / \mathrm{O}$ extension modules.

Functions

- Programming the controller using the function block diagram (FBD):
- up to 1024 function blocks can be programmed (for FLC18, for FLC12-512 function blocks);
- dozens of basic logic functions and function blocks;
- you can create your own function blocks;
- Free software in Polish;
- Programming of the controller via Ethernet (FLC18-ETH) and/or FLC-USB programmer;
- Menu and controller notifications in Polish;
- Operator panel: LCD display (4×16 characters) and 6-button keypad;
- Real-time clock with battery back-up and weekly, yearly and astronomical functions;
- Support for Modbus RTU/TCP/ASCII communication protocol;
- Web server and controller programming via Ethernet (FLC18-ETH);
- Each central unit is equipped with analog inputs and fast counting inputs;
- Up to 16 extension modules can be connected (FLC18):
- digital input and relay output modules;
- digital input and transistor output modules;
- analog inputs;
- analog outputs;
-temperature transmitters for PT100 probes;
- RS-485 communication modules;
- Controller power supply $12 \div 24$ V DC;
- Modular mounting on a DIN rail (35 mm)

Hardware resource table

Model	FIC18-ETH-12DI-6R	FLC18-12DI-6R	FLC12-8DI-4R	FLC18E-8DI-8R	FLC18E-8DI-8TN	FIC18E-4AI-I	FLC18E-2AQ-VI	FLC18E-3PT100	FLC18E-RS485
Type	Central unit			Expansion module					
Function	CPU+Ethernet	CPU	CPU	Digital inputs and outputs relay	Digital inputs and outputs transistor	Inputs analog	Inputs analog	Transmitter of temperature	Module of communication
Power supply	$12 \div 24 \mathrm{VDC}$	$12 \div 24 \mathrm{VDC}$	12 $\div 24 \mathrm{VDC}$	12 24 V VDC	$12 \div 24 \mathrm{VDC}$	$12 \div 24 \mathrm{VDC}$	$12 \div 24 \mathrm{~V}$ DC	$12 \div 24 \mathrm{VDC}$	$12 \div 24 \mathrm{~V}$ DC
Digital inputs (total)	12	12	8	8	8	-	-	-	-
fast (60 kHz)	4	4	4	-	-	-	-	-	-
Analog inputs (total)	8	6	4	4	4	4	-	3	-
voltage ($0 \div 10 \mathrm{~V}$)	8	6	4	4	4	-	-	-	-
current ($0 \div 20 \mathrm{~mA}$)	2	-	-	-	-	4	-	-	-
PT100 probe	-	-	-	-	-	-	-	3	-
Digital outputs (total)	6	6	6	8	8	-	-	-	-
relay ($10 \mathrm{~A} / 250 \mathrm{VAC}$)	6	6	4	8	-	-	-	-	-
relay ($3 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC}$)	-	-	-	4	-	-	-	-	-
transistor ($0.3 \mathrm{~A} / 60 \mathrm{~V} \mathrm{DC}$)	-	-	-	-	8	-	-	-	-
Analog outputs (total)	-	-	-	4	-	-	2	-	-
voltage ($0 \div 10 \mathrm{~V}$)	-	-	-	4	-	-	2	-	-
current ($0 \div 20 \mathrm{~mA}$)	-	-	-	-	-	-	2	-	-
Communication ports	$\begin{aligned} & \text { Ethernet RS485 } \\ & \text { RS232 (TTL) } \end{aligned}$	RS232 (TTL)	RS232 (TTL)	-	-	-	-	-	RS485
RTC clock	-	-	-	-	-	-	-	-	-
LCD panel and keyboard	-	-	-	-	-	-	-	-	-
Data recording (SD card)	-	-	-	-	-	-	-	-	-
Ethernet	web server, Modbus, TCP/RTU, MQTT, Programming of the controller	-	-	-	-	-	-	-	-
Page	142	143	144	146	146	147	147	147	148

Software tools

Purpose
The free FLCLogic Soft utility software is used to program FLC drivers.
Basic features of the application:

- Create programs using the function block diagram;
- Application, contextual help, and documentation for the program is available in Polish;
- Simulation of the program operation without the need to connect the FLC driver;
- Writing and reading the program to and from the FLC driver by means of the FLC-USB programmer or Ethernet connection (FLC18-ETH);
- Advanced testing of the program running on the controller:
- online preview of the status of inputs, outputs, and variables;
- forcing the state of variables;
- registration of analog and digital data.

FLCLogic Soft application

Registration of analogue data in FLCLogic Soft app.

Elements of the system

FLC18-ETH-12DI-6R

CPU central unit with Ethernet

Purpose

FLC18-ETH-12DI-6R is an advanced programmable relay, which integrates many solutions, thus enabling the construction of functional automatic control systems.

Functions

- 12 inputs and 6 relay outputs;
- Analog inputs, both voltage $0 \div 10 \mathrm{~V}$ and current $0 \div 20 \mathrm{~mA}$, enabling direct connection of many types of measurement sensors to the relay;
- Ability to expand the driver with 16 expansion modules;
- Ethernet port for connecting the relay to the local network;
- Built-in web server and access to the controller via a web browser;
- Integration with Internet Of Things (IOT) devices provided by MQTT protocol support;
- Data can be recorded on SD card;
- Isolated RS-485 port with Modbus RTU/ASCII support;
- Programming of the controller via Ethernet or directly via the programmer;
- An LCD display and keyboard for ease of use;
- Real-time clock with calendar and battery back-up.

programming language	FBD (64 kB)
number of function blocks	1024
size of the FBD program	64 kB
power supply	
nominal	24 V DC
resistance to temporary power failure	5 ms
starting current	250 mA
power	4 W
inputs	
total number of inputs	12 (11*\|C)
number of digital inputs	12 (I1 \div IC)
number of analog inputs	
voltage ($0 \div 10 \mathrm{~V}$ DC)	8 (11:18)
current ($0 \div 20 \mathrm{~mA}$)	$2(17 \div 18)$
isolation between input and power supply	resistance
isolation between inputs	none
digital inputs I1 1 IC	
regular inputs (4 Hz)	8 (11:18)
high-speed inputs (60 kHz)	4 (19 - 1C)
range of input voltages	$0 \div 28.8 \mathrm{VDC}$
analog voltage inputs $11 \div 16$	
measuring range	$0 \div 10 \mathrm{~V}$ DC
maximum input voltage	28.8 V DC
input impedance	$34 \div 72 \mathrm{k} \Omega$
resolution	10 bit
voltage accuracy at $25^{\circ} \mathrm{C}$	20 mV
voltage accuracy at $55^{\circ} \mathrm{C}$	40 mV
analog current inputs 17\%18	
measuring range	$0 \div 20 \mathrm{~mA}$
input impedance	
resolution	10 bit
measurement accuracy at $25^{\circ} \mathrm{C}$	0.05 mA
measurement accuracy at $55^{\circ} \mathrm{C}$	0.1 mA
outputs	
number of outputs	6 (Q1 - Q6)
type of output	relay
load capacity of contacts	
power supply AC	
resistive load	10 A
inductive load	2 A
maximum voltage	250 V
power supply DC	
load	5 A
maximum voltage	30 V
electrical life, resistive load	10^{5} cycles
mechanical durability	10^{7} cycles
switching speed (mechanical)	10 Hz
short circuit protection and surge protection	none
RTC accuracy	$\pm 2 \mathrm{~s} /$ day
RTC support time	20 days
program lifespan	10 years
protection against the loss of data	YES
cycle time	$0.6 \div 8 \mathrm{~ms}$
single application processing time	$100 \mu \mathrm{~s}$
extension modules	16
operator panel	4
LCD display (characters)	4×16 characters
keyboard	6 buttons
customizable	YES
communication ports	
Ethernet	1
speed	10M/100M Bps
purpose Modbus TCP	Master and Slave) MQTT of the controller
RS232 (TTL)	1
purpose progr	of the controller
RS485	1
speed 3	$\begin{aligned} & 00,9600,19200, \\ & 600,115200 \mathrm{Bps} \end{aligned}$
purpose Modbus RTU	Master and Slave)
web server	YES
program protection	YES
working temperature	$-20 \div 55^{\circ} \mathrm{C}$
dimensions	$95 \times 90 \times 61 \mathrm{~mm}$
weight	400 g
ingress protection	IP20

FLC18-12DI-6R

Purpose

FLC18-12DI-6R is a programmable relay dedicated for automatic control systems of medium complexity.

Functions

- 12 inputs and 6 relay outputs;
- Built-in voltage analog inputs and fast counting inputs;
- Ability to expand the driver with 16 expansion modules;
- An LCD display and keyboard for ease of use;
- Real-time clock with calendar and battery back-up.

power supply	$12 \div 24 \mathrm{VDC}$
resistance to temporary power failure	5 ms
starting current	250 mA
power	$3.5 \div 4 \mathrm{~W}$
inputs	
total number of inputs	12 (11 1 \|C)
number of digital inputs	12 (I1 1 l)
number of digital inputs	6 (11 16$)(0 \div 10 \mathrm{~V} \mathrm{DC})$
range of input voltages	$0 \div 28.8 \mathrm{VDC}$
input type	resistive
isolation between input and power supply	resistance
isolation between inputs	none
analog inputs 11 16	
measuring range	$0 \div 10 \mathrm{~V}$ DC
maximum input voltage	28.8 V DC
input impedance	$34 \div 72 \mathrm{k} \Omega$
resolution	10 bit
voltage accuracy at $25^{\circ} \mathrm{C}$	20 mV
voltage accuracy at $55^{\circ} \mathrm{C}$	40 mV
outputs	
number of outputs	6 (Q1 - Q6)
type of output	relay
continuous current, resistive load	10 A
continuous current, inductive load	2 A
operating voltage (AC)	250 V
operating voltage (DC)	48 V
acceptable power load	300 W
electrical life, resistive load	10^{5} cycles
mechanical durability	10^{7} cycles
switching speed (mechanical)	10 Hz
short circuit protection and surge protection	none
other parameters	
number of function blocks	1024
number of event counters (1 $1 \div 99999999$)	1024
number of timers ($10 \mathrm{~ms} \div 99 \mathrm{~h} 59 \mathrm{~m}$)	1024
number of digital flags	256
number of analog registers	256
number of PI regulators	30
number of mathematical blocks	1024
number of HMI screens	128
RTC accuracy	± 2 s/day
RTC support time	20 days
program lifespan	10 years
protection against the loss of data	YES
cycle time	$0.6 \div 8 \mathrm{~ms}$
single application processing time	100 ms
extension modules	16
number of free inputs (4 Hz)	8
number of high-speed inputs (60 kHz)	4
operator panel	YES
RS232	YES
communication protocol	Modbus RTU/ ASCII
HMI panel	YES
program protection	PIN, 4 digits
working temperature	$-20 \div 55^{\circ} \mathrm{C}$
dimensions	$95 \times 90 \times 61 \mathrm{~mm}$
weight	400 g
terminal 2.5	mm^{2} screw terminals
tightening torque	0.4 Nm
ingress protection	IP20

FLC12-8DI-4R

Purpose

FLC12-8DI-4R is a basic programmable relay dedicated for simple control systems where no large number of inputs/outputs or additional extension modules are required.

Functions

- 8 inputs and 4 relay outputs;
- Built-in voltage analog inputs and fast counting inputs;
- An LCD display and keyboard for ease of use;
- Real-time clock with calendar and battery back-up.

power supply	$12 \div 24 \mathrm{VDC}$
resistance to temporary power failure	5 ms
starting current	250 mA
power	$3.5 \div 4 \mathrm{~W}$
inputs	
total number of inputs	$8(11 \div 18)$
number of digital inputs	$8(11 \div 18)$
number of digital inputs	$4(11 \div 14)(0 \div 10 \mathrm{~V} \mathrm{DC})$
range of input voltages	$0 \div 28.8 \mathrm{VDC}$
input type	resistive
isolation between input and power supply	resistance
isolation between inputs	none
analog inputs 11 14	
measuring range	$0 \div 10 \mathrm{VDC}$
maximum input voltage	28.8 VDC
input impedance	$34 \div 72 \mathrm{k} \Omega$
resolution	10 bit
voltage accuracy at $25^{\circ} \mathrm{C}$	20 mV
voltage accuracy at $55^{\circ} \mathrm{C}$	40 mV
outputs	
number of outputs	4 (Q1 - Q4)
type of output	relay
continuous current, resistive load	10 A
continuous current, inductive load	2 A
operating voltage (AC)	250 V
operating voltage (DC)	48 V
acceptable power load	300 W
electrical life, resistive load	10^{5} cycles
mechanical durability	10^{7} cycles
switching speed (mechanical)	10 Hz
short circuit protection and surge protection	none
other parameters	
number of function blocks	512
number of event counters (1 $\div 99999999$)	512
number of timers ($10 \mathrm{~ms} \div 99 \mathrm{~h} 59 \mathrm{~m}$)	512
number of digital flags	256
number of analog registers	256
number of PI regulators	30
number of mathematical blocks	512
number of HMI screens	64
RTC accuracy	$\pm 2 \mathrm{~s} /$ day
RTC support time	20 days
program lifespan	10 years
protection against the loss of data	YES
cycle time	$0.6 \div 8 \mathrm{~ms}$
single application processing time	100 ms
extension modules	NO
number of free inputs (4 Hz)	4
number of high-speed inputs (60 kHz)	4
operator panel	YES
RS232	YES
HMI panel	YES
working temperature	$-20 \div 55^{\circ} \mathrm{C}$
dimensions	$71.5 \times 90 \times 61 \mathrm{~mm}$
weight	300 g
terminal 2.5	mm^{2} screw terminals
tightening torque	0.4 Nm
ingress protection	IP20

FLC-USB (programmer) interface for programming fLC drivers

Purpose

Separated interface for programming FLC and USB 2.0 drivers.

power supply	$12 \div 24 \mathrm{VDC}$
resistance to temporary power failure	5 ms
starting current	250 mA
power	$3.5 \div 4 \mathrm{~W}$
inputs	
total number of inputs	$8(11 \div 18)$
number of digital inputs	8 (11 1 C)
number of digital inputs	$4(11 \div 14)(0 \div 10 \mathrm{VDC})$
range of input voltages	$0 \div 28.8 \mathrm{VDC}$
input type	resistive
isolation between input and power supply	resistance
isolation between inputs	none
analog inputs 11 114	
measuring range	$0 \div 10 \mathrm{~V}$ DC
maximum input voltage	28.8 VDC
input impedance	$34 \div 72 \mathrm{k} \Omega$
resolution	9 bit
voltage accuracy at $25^{\circ} \mathrm{C}$	30 mV
voltage accuracy at $55^{\circ} \mathrm{C}$	60 mV
outputs	
number of outputs	8 (Q1 -Q 8)
type of output	PNP transistor
continuous current (resistive load)	300 mA
critical current	650 mA
maximum output voltage	30 V
switching frequency (resistive load)	10 Hz
switching frequency (inductive load)	0.5 Hz
short circuit protection and surge protection	none
other parameters	
cooperation with the CPU modules	YES
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$71.5 \times 90 \times 58 \mathrm{~mm}$
weight	300 g
terminal 2.5	mm^{2} screw terminals
tightening torque	0.4 Nm
ingress protection	IP20

FLC18E-8DI-8R
expansion module of the analog-to-digital inputs/outputs

power supply	$12 \div 24 \mathrm{VDC}$
resistance to temporary power failure	5 ms
starting current	250 mA
power	$3.5 \div 4 \mathrm{~W}$
inputs	
total number of inputs	8 (11٪18)
number of digital inputs	8 (I1 \div IC)
number of digital inputs	$4(11 \div 14)(0 \div 10 \mathrm{~V} \mathrm{DC})$
range of input voltages	$0 \div 28.8 \mathrm{VDC}$
input type	resistive
isolation between input and power supply	resistance
isolation between inputs	none
analog inputs 11 114	
measuring range	$0 \div 10 \mathrm{~V}$ DC
maximum input voltage	28.8 VDC
input impedance	$34 \div 72 \mathrm{k} \Omega$
resolution	9 bit
voltage accuracy at $25^{\circ} \mathrm{C}$	30 mV
voltage accuracy at $55^{\circ} \mathrm{C}$	60 mV
outputs	
number of outputs	8 (Q1 - Q8)
type of output	relay
continuous current, resistive load (Q1-Q4)	3 A
continuous current, inductive load (Q1 \div Q4)	1 A
continuous current, resistive load (Q5 \div Q8)	10 A
continuous current, inductive load (Q5 \div Q8)	2 A
operating voltage (AC)	250 V
operating voltage (DC)	48 V
switching speed (mechanical)	2 Hz
short circuit protection and surge protection	none
other parameters	
cooperation with the CPU modules	YES
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$71.5 \times 90 \times 58 \mathrm{~mm}$
weight	300 g
terminal 2.5	mm^{2} screw terminals
tightening torque	0.4 Nm
ingress protection	IP20

FLC18E-2AQ-VI
expansion module of analog outputs (2 voltage +2 current)

FLC18E-3PT100

expansion module for PT100 temperature sensors with 3 inputs

power supply	$12 \div 24 \mathrm{VDC}$
resistance to temporary power failure	5 ms
starting current	250 mA
power	1 W
sensor inputs PT100	
number of sensors	3 (Al1 \div Al3)
measuring probe	PT100
probe type	2- or 3-wire
resolution	12 bit
measurement accuracy at $25^{\circ} \mathrm{C}$	$0.3{ }^{\circ} \mathrm{C}$
other parameters	
cooperation with the CPU modules	FLC18-12DI-6R
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
dimensions	$71.5 \times 90 \times 58 \mathrm{~mm}$
wight	300 g
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
ingress protection	IP20

FLC18E-RS485
expansion module with RS-485 communication interface

Purpose
MAX H04 is a freely programmable logic controller (PLC) with a built-in GSM communicator. It is designed to solve a wide range of tasks of technological process management and data exchange via GSM mobile phone network in SMS, VOICE, and CLIP connection mode. The controller is used in home automation as a control of operating states of devices and remote control and as an element of solutions for control and supervision of industrial automation devices of small and medium degree of technological advancement.

controller program cycle	10 ms
power supply	$9 \div 30 \mathrm{VDC}$
digital inputs	4 (30 V; 0.2 A)
analog/digital input	$4(0 / 4 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{~V})$
digital output OC	4 ($50 \mathrm{~V} ; 0.2 \mathrm{~A}$)
relay outputs (symistors)	3 ($<3 \mathrm{~A} ; 600 \mathrm{VAC}$)
ports	SD, microUSB, SIM, RS-485
communication protocol	Modbus RTU
recorder internal memory	1.3 MB
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
working temperature	$-10 \div 50^{\circ} \mathrm{C}$
dimensions	$110 \times 79 \times 40 \mathrm{~mm}$
installation	surface mounting or for TH-35 rail
protection level	IP20

The MAX H04 module is one of the few controllers that allow you to connect and use it without any programming elements. With the special configuration program H04 Config, it can be used by anyone who does not want to learn the programming languages and complicated PLC programming procedures.

Infrastructure

The MAX Logic controller works in GSM 900/1800 cellular networks of any operator operating in Poland (the device is unlocked). One of the basic conditions for using the GSM communicator of the controller is the existence of an appropriate infrastructure. In order for the controller to make calls and perform the specified functions, it must have an active SIM card to perform communication services with the selected GDM operator.

Functions

- Working mode

The controller can function as a device with a rigid operating algorithm, whose parameters and functions are set using H04 Config software, or as a freely programmable logic controller, whose operating logic is fully specified in the application (programs written using ForthLogic or MAXLadderSoft programming languages.

- Configuration menu

Graphical-text menu for setting controller functions, configuring input types, setting specific output functions, providing telephone numbers to which notifications are to be sent, establishing access lock and specifying performance parameters for specific tasks.

- IVR voice menu (playback of *.wav sound files)

It allows you to remotely control in standard voice call mode using the DTMF functions (selecting an option by pressing the desired phone keypad button).

- Recorder

The stand-alone recorder stores data in one of three modes:

- interval mode - data are read at equal, preset intervals;
- event mode - data are recorded only when there are any changes in the logical state of inputs/outputs;
- user-mode - data is recorded in accordance with the user format defined in the ForthLogic language application.

The data is stored in the non-volatile internal memory or on an SD card as a text file.
The data is written in series in the form of text: 13:04:39|19/03|18.4 13.8|3530000 $00000000|01010100| 0100 \mid 110$

- Remote control and notifications

The remote control function allows you to directly manage the outputs and control the operating status of devices connected to the controller inputs via your mobile phone.

- Voice menu

The IVR voice menu (playback of .wav sound files) allows you to remotely control in standard voice connection mode using the DTMF functions (selecting an option by pressing the desired phone keypad button). When creating a program in ForthLogic language it is possible to create any voice menu based on the individual needs of the user such as boiler control 1, heating control 2, group control 3, and system status 4.

- SMS commands

SMS commands are standard ForthLogic language commands, which are known to the Forth-system word interpreter and are directly executed by the controller. Therefore, it is possible to specify any command word from the standard ForthLogic dictionary, which will be implemented directly by the controller, for example: 11 RO ! As a parameter word, it sets the relay output 1 to the active state. After executing the command, you will receive a return message "(OK)". If the command unknown to the Forth-system word interpreter is given, the return message "ERROR - UNKNOWN WORD" will be sent.
When creating a program in the ForthLogic language according to the individual needs of the user, it is possible to create commands of any meaning, for example, START, STATE, PUMP? etc. performing actions defined by ForthLogic language words.

- Notifications

The notification function allows you to receive instant SMS information on the user's phone about the change in the status of digital or analog inputs, change of operating parameters of the system, etc. SMS content is standard words or system messages or specially defined phrases such as "Attention, main power failure".

- RS-485 communication port and Modbus RTU protocol

The controller can exchange data with external devices via the RS-485 interface using the Modbus RTU protocol.

- Internal memory

Built-in 2 MB non-volatile memory designed to store recorded data.

- SD card

SD/MMC memory card reader allows you to perform service functions and record and store registration data. SD, SDHC and MMC memory cards up to 32 GB are supported.

- RS-485 communication port and Modbus RTU protocol

The controller can exchange data with external devices via the RS-485 interface using the Modbus RTU protocol.

- Power supply

The power module and built-in battery charger allow you to implement a flexible power supply scheme. For many functions of the controller, an emergency power supply (backup) in the form of an external gel battery with a nominal voltage of 12 V is required. The controller continuously monitors the state of the battery charge and charges it automatically when the main supply voltage is present.

- Clock

The controller has the function of automatic time change from the daylight saving time to standard time with the possibility of switching it off. In order to increase the accuracy of the system clock, it is possible to set the automatic time correction in seconds using the MAX Tool program. System time is adjusted on the first day of each month at 21:00:00 by adding the preset correction value to the system time.

- Access lock

It is possible to set a password that protects access to the system through the terminal and SMS commands. The password is a sequence of $4 \div 15$ digits set in the MAX Tool, H04 Config program and Forth language commands.

- Status of IN/OUT

The status screen of the inputs and outputs allows for an optical evaluation of the operating status of the controller, informs about the firmware version, available memory and parameters of supply voltages.

Functions

- Control of outputs via SMS commands;
- Queries about the status of inputs and outputs by SMS commands;
- SMS/VOICE alerts about the activation of inputs;
- SMS/VOICE alerts about exceeding the measurement value, for example exceeding the temperature;
- Definition of the content of SMS alarms - A(up to 160 characters);
- The option of sending a second text message when the alarm threshold is continuously exceeded;
- Output control depending on the assigned input:
- LEVEL option - representation of the state (IN 1 -> OUT 1, IN 0 -> OUT 0);
- PULSE option - time activation of the output for a set time after the input has been activated;
- The function of a two-state controller of the HEATING/COOLING type (based on the definitions of the analog input scale, threshold, and output assigned to it);
- Selection of options for actuation and alarm triggering (high state 1 or low state 0);
- Printing of states and values on LCD;
- User menu for settings of alarm threshold values and adjustments, telephone numbers, control options, etc.
- CLIP (dial-up) feature and an astronomical clock function.

Software tools

A hardware and software system called "forth-system" is responsible for the execution of tasks and interpretation of the software written with the ForthLogic programming language. The ForthLogic underlying computational model consists of stacks, global variables, a dictionary, an input buffer, and an output buffer. The ForthLogic language allows describing parallel processes and runs in a multi-tasking environment.
The interactive programming and application development environment for MAX controllers in ForthLogic language consists of Notepad++ text editor, PuTTY terminal program and ForthLogic Programmer, which provides two-way communication between PC and MAX controller.
This environment allows you to create scripts in the ForthLogic language, program MAX controllers and interact with the controller in terminal mode.
The MAXLadderSOFT software allows you to easily replace the "relay" schema with the programming language of the controller.
The program allows:

- to create and edit applications using the ladder diagram language [LAD];
- to check the correctness of the schema design;
- for direct communication between the controller and the computer;
- to upload applications to the memory of the controller.

Direct operation with the system of the controller is called dialog mode.
There are 2 types of dialog operation: terminal and remote.
Terminal mode means working with a HyperTerminal-type program (MAX-PC connection via USB). The terminal mode is primarily used to learn to program, solve programming tasks or solve problems in controller operation.
Remote mode (only for controllers with GSM module) - the controller operates with the phone via SMS. In this mode, the phone display performs similar functions as the terminal window on the computer monitor. Remote mode is used to remotely control devices connected to the controller. The MAX Tool service program allows you to set controller operating parameters, upload firmware, and Forth language applications, open Extensions and communicate directly in a simplified terminal mode.

HyperTerminal

MaxLadder Soft

Notepad++Putty+Forthlogic Programmer

RS-485 communication network (Modbus RTU) based on FLC controllers

Section VII

 Power supply controlChapter 26
Phase loss sensors 154
Chapter 27
Phase sequence and phase loss sensors 161
Chapter 28
Voltage relays 165
Chapter 29
Automatic phase switches 168
Chapter 30
Automatic transfer switches 173
Chapter 31
Network-aggregate switches 178

Phase loss sensors

Purpose

Phase loss sensors are designed to protect an electric motor powered from a three-phase network in following cases:

- a voltage loss in at least one phase;
- an asymmetry of the voltage between phases above the set value;
- damage to the switching contactor (for version with contact control).

Additionally for the True RMS version:

- a voltage drop in at least one phase below 150 V ;
- a voltage rise in at least one phase above 280 V .

Functioning

If the supply voltage is correct, the device indicates the correct functioning by the green LED and switches the internal contact to the active position after the set time. If any of the anomalies described in the section above occurs, the device disables the internal contact, causing the protected devices to be disconnected. The device will be switched back on automatically when voltages return to normal values.
For the contactor contacts control version, restart cannot take place until the contactor status has been checked and the unit has been reset. This prevents switching the device back on with a faulty actuator.

True RMS series devices

True RMS series devices, thanks to the use of microprocessor for voltage measurement, allow measurements in networks with large voltage distortions and disturbances. This is especially important nowadays, when there are already many pulse devices that cause interference in the network. Such devices include: LED bulbs, pulse power supplies (such as those installed in televisions, computers, phone chargers) or photovoltaic systems. The ever-increasing demand for electric power, which will increase even more due to the popularization of electric cars, may cause temporary voltage failures or spikes. Such interference can be misinterpreted by sensors on the standard line, which may result in their incorrect operation.

Product	Supply voltage	Maximum load current (AC-1)	Configuration of the contacts	Contact separation	Voltage asymmetry of tripping	$\begin{aligned} & \text { Off } \\ & \text { delay } \end{aligned}$	Cooperation with power generators	Control of phase sequence	Control of contactor contacts	Terminal	Mounting	Page
CZF	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO	-	45 V	4 s	-	-	-	$\begin{gathered} \text { OMY } 4 \times 1 \mathrm{~mm}^{2} ; \\ 2 \times 0.75 \mathrm{~mm}^{2}, \mathrm{I}: 0.5 \mathrm{~m} \end{gathered}$	surface-mounted	156
CZF TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO	-	45 V	4 s	-	-	-	OMY $4 \times 1 \mathrm{~mm}^{2}$; $2 \times 0.75 \mathrm{~mm}^{2}, 1: 0.5 \mathrm{~m}$	surface-mounted	156
CZF-B	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO	-	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	156
CZF-B TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	$1 \times \mathrm{NO}$	-	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	156
CZF-BR	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	157
CZF-BR TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	1×NO/NC	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $T \mathrm{H}-35$ rail	157
CZF-BS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO/NC	-	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	156
CZF-BS TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	1×NO/NC	-	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	156
CZF-BT	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO/NC	-	$40 \div 80 \mathrm{~V}$	0.5*5 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	157
CZF-bt trms	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	1×NO/NC	-	$40 \div 80 \mathrm{~V}$	$1 \div 10 \mathrm{~s}$	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	157
CZF-310	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	55 V	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	156
CZF-310 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO/NC	-	55 V	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	156
CZF-311	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO/NC	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for $T H-35$ rail	157
CZF-311 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO/NC	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	157
CZF-312	$3 \times 400 \mathrm{~V}+\mathrm{N}$	2×5 A	1×NO+1×NC	-	$40 \div 80 \mathrm{~V}$	0.2 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	157
CZF-312 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	$2 \times 8 \mathrm{~A}$	$1 \times \mathrm{NO}+1 \times \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	0.5 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	157
CZF-331	$3 \times 400 \mathrm{~V}+\mathrm{N}$	$2 \times 8 \mathrm{~A}$	2×NO/NC	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	158
CZF-331 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	$2 \times 8 \mathrm{~A}$	2×NO/NC	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	158
CZF-332	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	159
CZF-333	$3 \times 400 \mathrm{~V}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	2050 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $\mathrm{TH}-35$ rail	158
CZF-334 TRMS	$3 \times 400 \mathrm{~V}$	$2 \times 6 \mathrm{~A}$	2×NO/NC	-	20\% 80 V	$1 \div 10 \mathrm{~s}$	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	158
CZF2	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO}$	-	45 V	4 s	-	-	-	$1.5 \mathrm{~mm}^{2}$ screw terminals	surface-mounted	160
CZF2-B	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO}$	-	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	160
CZF2-BR	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO}$	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	160
CKF	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO	-	45 V	4 s	-	-	-	OMY $4 \times 1 \mathrm{~mm}^{2}$; $2 \times 0.75 \mathrm{~mm}^{2}, \mathrm{I}: 0.5 \mathrm{~m}$	surface-mounted	162
CKF TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO	-	45 V	4 s	-	-	-	$\begin{gathered} \text { OMY } 4 \times 1 \mathrm{~mm}^{2} ; \\ 2 \times 0.75 \mathrm{~mm}^{2}, \mathrm{I}: 0.5 \mathrm{~m} \end{gathered}$	surface-mounted	162
CKF-B	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO	-	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	162
CKF-B TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	$1 \times \mathrm{NO}$	-	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	162
CKF-BR	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO/NC	-	40 -80 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-BR TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-BT	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	0.5*5 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $T H-35$ rail	163
CKF-BT TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	$1 \div 10 \mathrm{~s}$	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for $T H-35$ rail	163
CKF-316	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	55 V	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	162
CKF-316 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	55 V	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	162
CKF-317	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-317 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-318 TRMS	$3 \times 400 \mathrm{~V}$	$2 \times 6 \mathrm{~A}$	$2 \times \mathrm{NO} / \mathrm{NC}$	-	$20 \div 80 \mathrm{~V}$	$1 \div 10 \mathrm{~s}$	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	164
CKF-319 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	2×8 A	2×NO/NC	-	$20 \div 80 \mathrm{~V}$	$1 \div 10 \mathrm{~s}$	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH -35 rail	164
CKF-320 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	$2 \times 8 \mathrm{~A}$	$2 \times \mathrm{NO} / \mathrm{NC}$	-	$20 \div 80 \mathrm{~V}$	1 $\div 10 \mathrm{~s}$	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	161
CKF-337	$3 \times 400 \mathrm{~V}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$20 \div 60 \mathrm{~V}$	$0.2 \div 5 \mathrm{~s}$	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	164

CZF / CZF TRMS surface-mounted, separated $1 \times$ NO contact

CZF-B / CZF-B TRMS separated $1 \times$ NO contact

	CZF-B CZF-B TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times$ NO
maximum load current (AC-1)	$10 \mathrm{~A} \quad 16 \mathrm{~A}$
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	55 V
voltage hysteresis	5 V
switch-off delay on asymmetry	$4 \mathrm{~s} \quad 4 \mathrm{~s}$
switch-off delay on phase loss	$1.5 \mathrm{~s} \quad 1 \mathrm{~s}$
activation delay	3.5 s - 4 s
power consumption	$0.8 \mathrm{~W} \quad 1.6 \mathrm{~W}$
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal, screw terminals	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (cord) } \\ & 4.0 \mathrm{~mm}^{2} \text { (wire) } \end{aligned}$
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

CZF-BS / CZF-BS TRMS separated $1 \times \mathrm{NO} / \mathrm{NC}$ contact

CZF-310 / CZF-310 TRMS

separated $1 \times$ NO/NC contact

	CZF-310
	CZF-310 TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	10 A
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	55 V
voltage hysteresis	5 V
switch-off delay on asymmetry	4 s
switch-off delay on phase loss	1 s
activation delay	4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal, screw terminals	$2.5 \mathrm{~mm}^{2}(\mathrm{cord} /$ wire $)$
tightening torque	0.4 Nm
dimensions	$1 \mathrm{module}(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP 20

With an adjustable tripping threshold of voltage asymmetry

CZF-BR / CZF-BR TRMS

separated $1 \times N O / N C$ contact, adjustable asymmetry

	CZF-BR CZF-BR TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	$10 \mathrm{~A} \quad 16 \mathrm{~A}$
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	$40 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
switch-off delay on asymmetry	$4 \mathrm{~s} \quad 4 \mathrm{~s}$
switch-off delay on phase loss	$1.5 \mathrm{~s} \quad 1 \mathrm{~s}$
activation delay	3.5 s - 4 s
power consumption	$0.8 \mathrm{~W} \quad 1.6 \mathrm{~W}$
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal, screw terminals	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (cord) } \\ & 4.0 \mathrm{~mm}^{2} \text { (wire) } \end{aligned}$
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

CZF-BT / CZF-BT TRMS
 separated $1 \times$ NO/NC contact, adjustable asymmetry and off delay

	CZF-BT CZF-BT TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times$ NO/NC
maximum load current (AC-1)	$10 \mathrm{~A} \quad 16 \mathrm{~A}$
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	$40 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
switch-off delay on asymmetry	$0.5 \div 5 \mathrm{~s} \quad 1 \div 10 \mathrm{~s}$
switch-off delay on phase loss	$1.5 \mathrm{~s} \quad 1 \mathrm{~s}$
activation delay	3.5 s - 4 s
power consumption	$0.8 \mathrm{~W} \quad 1.6 \mathrm{~W}$
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal, screw terminals	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (cord) } \\ & 4.0 \mathrm{~mm}^{2} \text { (wire) } \end{aligned}$
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

CZF-311 / CZF-311 TRMS

separated $1 \times$ NO/NC contact, adjustable asymmetry

CZF-312/CZF-312 TRMS
separated $1 \times N C$ and $1 \times N O$ contacts, with a tripping time of 0.5 s

power supply
contact
maximum load current (AC-1)
minimum phase voltage
maximum phase voltage
effective voltage unbalance
voltage hysteresis
switch-off delay on asymmetry
switch-off delay on phase loss
activation delay
power consumption
working temperature
terminal, screw terminals
tightening torque
dimensions
mounting
ingress protection

CZF-331/CZF-331 TRMS

separated $2 \times$ NO/NC contacts, adjustable asymmetry

	CZF-331 CZF-331 TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	$40 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
switch-off delay on asymmetry	$4 \mathrm{~s} \quad 4 \mathrm{~s}$
switch-off delay on phase loss	$4 \mathrm{~s} \quad 1 \mathrm{~s}$
activation delay	4 s - 4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal, screw terminals	$2.5 \mathrm{~mm}^{2}$ (cord/wire)
tightening torque	0.4 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

Adapted to work with a power generator (without neutral wire)

power supply	$3 \times 400 \mathrm{~V}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	10 A
indication correct power supply	$3 \times \mathrm{LED}$
effective voltage unbalance	$20 \div 50 \mathrm{~V}$
activation interphase voltage	$<320 \mathrm{~V}$
voltage hysteresis	5 V
deactivation delay	4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules $(52.5 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$\mathrm{IP20}$

CZF-334 TRMS

separated $2 \times$ NO/NC contacts, adjustable asymmetry, activation and deactivation delay, without neutral wire

power supply	$3 \times 400 \mathrm{~V}$
contact	separated
$2 \times \mathrm{NO} / \mathrm{NC}$	
maximum load current (AC-1)	$2 \times 6 \mathrm{~A}$
minimum phase voltage	320 V
maximum phase voltage	480 V
effective voltage unbalance	$20 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
switch-off delay on asymmetry	$1 \div 10 \mathrm{~s}$
switch-off delay on phase loss	1 s
activation delay	$1 \div 60 \mathrm{~s}$
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	
tightening torque	1 module $(18 \mathrm{~mm})$
dimensions	for TH-35 rail
mounting	IP 20

With control of the contactor contacts

Purpose

Phase loss sensor with the control of the contactor contacts is designed for protection of electric motor supplied from three-phase mains in the following cases:

- a voltage loss in at least one phase;
- a voltage drop in at least one phase below 150 V ;
- a voltage rise in at least one phase above 280 V ;
- an asymmetry of voltages between phases above the set value;
- contactor contact failure.

Functioning

Voltage loss in at least one phase or voltage asymmetry between phases above the tripping threshold will cause the motor to shut down. The shutdown will take place with a delay of 4 seconds, which prevents the motor from switching-off when the voltage drops temporarily. Re-activation will take place automatically when the voltage increases by 5 V above the tripping voltage (by the value of voltage hysteresis). A failure of any of the contacts of the contactor that switches the motor on will cause the motor to be switched off permanently. A restart is only possible after the power supply has been completely disconnected, the contactor fault has been removed and the power supply has been switched on again. In the event of the anomalies described above, starting the motor is not possible.

power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	10 A
indication of the correct power supply	ly $2 \times$ LED
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	$40 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
deactivation delay	4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal 2.5	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times \mathrm{NO}$
maximum load current (AC-1)	10 A
indication of the correct power supply	$2 \times$ LED
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	45 V
voltage hysteresis	5 V
deactivation delay	4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals (cord $/$ wire)
tightening torque	0.3 Nm
dimensions	$95 \times 60 \times 25 \mathrm{~mm}$
mounting	surface
ingress protection	IP 20

CZF2-B mounting on a DIN rail

power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	$1 \times \mathrm{NO}$
maximum load current (AC-1)	10 A
indication of the correct power supply	$2 \times \mathrm{LED}$
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	55 V
voltage hysteresis	5 V
deactivation delay	4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	
	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
tightening torque	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
dimensions	0.5 Nm
mounting	2 modules (35 mm)
ingress protection	for TH-35 rail

CZF2-BR adjustable asymmetry

power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	$1 \times \mathrm{NO}$
maximum load current (AC-1)	10 A
indication of the correct power supply	$2 \times \mathrm{LED}$
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	$40 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
deactivation delay	4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	
	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
tightening torque	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
dimensions	0.5 Nm
mounting	2 modules $(35 \mathrm{~mm})$
ingress protection	for TH-35 rail

Phase sequence and phase loss sensors

Purpose

Phase loss sensor with the control of the contactor contacts is designed for protection of electric motor supplied from three-phase mains in the following cases:

- a voltage loss in at least one phase;
- a voltage drop in at least one phase below 150 V;
- a voltage rise in at least one phase above 280 V ;
- an asymmetry of voltages between phases above the set value;
- incorrect phase sequence.

Functioning

Voltage loss in at least one phase or voltage asymmetry between phases above the tripping threshold will cause the motor to shut down. The shutdown will take place with a delay of 4 seconds, which prevents the motor from switching-off when the voltage drops temporarily. Re-activation will take place automatically when the voltage increases by 5 V above the tripping voltage (by the value of voltage hysteresis). In the event of the anomalies described above, starting the motor is not possible. If the phase sequence is changed before the sensor causing an unwanted change of the motor rotation direction, the sensor will not allow the motor to start. Re-activation is possible after the correct phase sequence has been restored.

Product	Supply voltage	Maximum load current (AC-1)	Configuration of the contacts	Contact separation	Voltage asymmetry of tripping	Off delay	Cooperation with power generators	Control of phase sequence	Control of contactor contacts	Terminal	Mounting	Page
CKF	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	1×NO	-	45 V	4 s	-	-	-	$\begin{gathered} \mathrm{OMY} 4 \times 1 \mathrm{~mm}^{2} ; \\ 2 \times 0.75 \mathrm{~mm}^{2}, \mathrm{I}: 0.5 \mathrm{~m} \end{gathered}$	surface-mounted	162
CKF TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO}$	-	45 V	4 s	-	-	-	$\begin{gathered} \text { OMY } 4 \times 1 \mathrm{~mm}^{2} ; \\ 2 \times 0.75 \mathrm{~mm}^{2}, \mathrm{I}: 0.5 \mathrm{~m} \end{gathered}$	surface-mounted	162
CKF-B	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO}$	-	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	162
CKF-B TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	$1 \times \mathrm{NO}$	\bullet	55 V	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	162
CKF-BR	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-BR TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-BT	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times$ NO/NC	-	$40 \div 80 \mathrm{~V}$	$0.5 \div 5 \mathrm{~s}$	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-BT TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$40 \div 80 \mathrm{~V}$	$1 \div 10 \mathrm{~s}$	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-316	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times$ NO/NC	\bullet	55 V	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	162
CKF-316 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	55 V	4 s	-	\bullet	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	162
CKF-317	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	\bullet	$40 \div 80 \mathrm{~V}$	4 s	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-317 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	10 A	$1 \times \mathrm{NO} / \mathrm{NC}$	\bullet	$40 \div 80 \mathrm{~V}$	4 s	-	\bullet	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	163
CKF-318 TRMS	$3 \times 400 \mathrm{~V}$	$2 \times 6 \mathrm{~A}$	$2 \times \mathrm{NO} / \mathrm{NC}$	\bullet	$20 \div 80 \mathrm{~V}$	$1 \div 10 \mathrm{~s}$	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	164
CKF-319 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	$2 \times 8 \mathrm{~A}$	$2 \times \mathrm{NO} / \mathrm{NC}$	-	20 $\div 80 \mathrm{~V}$	$1 \div 10 \mathrm{~s}$	-	-	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	164
CKF-320 TRMS	$3 \times 400 \mathrm{~V}+\mathrm{N}$	$2 \times 8 \mathrm{~A}$	$2 \times \mathrm{NO} / \mathrm{NC}$	\bullet	$20 \div 80 \mathrm{~V}$	$1 \div 10 \mathrm{~s}$	-	\bullet	-	$2.5 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	161
CKF-337	$3 \times 400 \mathrm{~V}$	10 A	$1 \times$ NO/NC	-	$20 \div 60 \mathrm{~V}$	$0.2 \div 5 \mathrm{~s}$	-	-	-	$4.0 \mathrm{~mm}^{2}$ screw terminals	for TH-35 rail	164

With a constant tripping threshold of voltage asymmetry

CKF/CKF TRMS

surface-mounted, separated $1 \times$ NO contact

CKF-B/CKF-B TRMS

separated $1 \times$ NO contact

	CKF CKF TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times \mathrm{NO}$
maximum load current (AC-1)	10 A
minimum phase voltage	150 V
maximum phase voltage	180 V
effective voltage unbalance	45 V
voltage hysteresis	5 V
switch-off delay on asymmetry	$4 \mathrm{~s} \quad 4 \mathrm{~s}$
switch-off delay on phase loss	$1.5 \mathrm{~s} \quad 1 \mathrm{~s}$
activation delay	3.5 s 4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	$\begin{gathered} \text { OMY } 4 \times 1 \mathrm{~mm}^{2} ; \\ 2 \times 0.75 \mathrm{~mm}^{2} ; l=0.5 \mathrm{~m} \end{gathered}$
dimensions	$51 \times 67 \times 26 \mathrm{~mm}$
mounting	surface
ingress protection	IP20

(1) brown
(2) blue

\qquad

	CKF-B	F-B TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$	
contact	separated $1 \times$ NO	
maximum load current (AC-1)	10 A	16 A
minimum phase voltage	-	150 V
maximum phase voltage	-	280 V
effective voltage unbalance	55 V	
voltage hysteresis	5 V	
switch-off delay on asymmetry	4 s	4 s
switch-off delay on phase loss	1.5 s	1 s
activation delay	3.5 s	4 s
power consumption	0.8 W	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$	
terminal, screw terminals	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (cord) } \\ & 4.0 \mathrm{~mm}^{2} \text { (wire) } \end{aligned}$	
tightening torque	0.5 Nm	
dimensions	2 modules (35 mm)	
mounting	for TH-35 rail	
ingress protection	IP20	

CKF-316/CKF-316 TRMS
separated $1 \times$ NO/NC contact

	CKF-316 CKF-316 TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times$ NO/NC
maximum load current (AC-1)	10 A
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	55 V
voltage hysteresis	5 V
switch-off delay on asymmetry	4 s
switch-off delay on phase loss	1 s
activation delay	4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal, screw terminals	$2.5 \mathrm{~mm}^{2}$ (cord/wire)
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

With an adjustable tripping threshold of voltage asymmetry

CKF-BR/CKF-BR tRMS

separated $1 \times$ NO/NC contact, adjustable asymmetry

	CKF-BR CKF-BR TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	$10 \mathrm{~A} \quad 16 \mathrm{~A}$
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	$40 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
switch-off delay on asymmetry	$4 \mathrm{~s} \quad 4 \mathrm{~s}$
switch-off delay on phase loss	$1.5 \mathrm{~s} \quad 1 \mathrm{~s}$
activation delay	3.5 s - 4 s
power consumption	0.8 W 1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal, screw terminals	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (cord) } \\ & 4.0 \mathrm{~mm}^{2} \text { (wire) } \end{aligned}$
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

CKF-BT/ CKF-BT TRMS

 separated $1 \times$ NO/NC contact, adjustable asymmetry and off time

CKF-317/CKF-317 TRMS

separated $1 \times$ NO/NC contact, adjustable asymmetry

	CKF-317
	CKF-317 TRMS
power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	10 A
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	$40 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
switch-off delay on asymmetry	4 s
switch-off delay on phase loss	1 s
activation delay	4 s
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal, screw terminals	$2.5 \mathrm{~mm}^{2}(\mathrm{cord} /$ wire $)$
tightening torque	0.4 Nm
dimensions	$1 \mathrm{module}^{(18 \mathrm{~mm})}$
mounting	for TH-35 rail
ingress protection	IP 20

CKF-319 TRMS 1 -module housing, separated $2 \times$ NO/NC contacts, adjustable asymmetry, activation and deactivation delay

power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
minimum phase voltage	150 V
maximum phase voltage	280 V
effective voltage unbalance	$20 \div 80 \mathrm{~V}$
voltage hysteresis	5 V
switch-off delay on asymmetry	$1 \div 10 \mathrm{~s}$
switch-off delay on phase loss	1 s
activation delay	$1 \div 60 \mathrm{~s}$
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
	(cord $/$ wire)
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP 20

Adapted to work with a power generator (without neutral wire)

CKF-318 TRMS 1-module housing, separated $2 \times$ NO/NC contacts, adjustable asymmetry,

 activation and deactivation delay, without neutral wire

CKF-337
separated $1 \times$ NO contact/NC, adjustable asymmetry, deactivation delay, without neutral wire

power supply	$3 \times 400 \mathrm{~V}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	10 A
effective voltage unbalance	$20 \div 60 \mathrm{~V}$
activation interphase voltage	$<320 \mathrm{~V}$
voltage hysteresis	5 V
deactivation delay (adjustable)	$0.2 \div 5 \mathrm{~s}$
power consumption	1.6 W
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules $(52.5 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP 20

Voltage relays

Purpose

Voltage relays are used to control the voltage of a single-phase or three-phase network and protect the receiver against the effects of voltage drop or rise beyond the set values.

All types of voltage relays can be supplied with voltages up to 450 V . This allows for effective protection of the receiver even if the voltage exceeds the permissible standards. Also in cases of replacing the polarity of the power supply or disconnecting the "zero", it will not destroy (burn) the relay.

Functioning

The potentiometers are used to set the lower $\left(U_{1}\right)$ and upper $\left(U_{2}\right)$ voltage thresholds. It is the so-called "voltage window", within the limits of which there may be changes of power supply voltage that do not cause the relay activation. Changing the supply voltage above or below the set voltage thresholds will switch the contact of the relay. The relay contact will be switched back automatically when the correct voltage is restored.

Time lock

Applies to CP-710 and CP-730: As a result of unstable voltage in the mains and frequent changes of supply voltage beyond the set
thresholds of the voltage window (minimum 10 times per 1 minute), the relay is locked for a period of 10 minutes. This prevents the connected receiver from being turned on and off too often.

power supply	$50 \div 450 \mathrm{~V} \mathrm{AC}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	16 A
power supply control	4×LED
voltage activation threshold	
lower U_{1}	150 210 V
upper U_{2}	$230 \div 260 \mathrm{~V}$
voltage hysteresis	
for threshold U_{1}	5 V
for threshold U_{2}	5 V
activation time	
for threshold U_{1}	1.5 s
for threshold U_{2}	0.1 s
return time	
for threshold U_{1}	1.5 s
for threshold U_{2}	1.5 s
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

power supply	$50 \div 450 \mathrm{~V} \mathrm{AC}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	16 A
power supply control	$4 \times$ LED
voltage activation threshold	
lower U_{1}	150 210 V
upper U_{2}	$230 \div 260 \mathrm{~V}$
voltage hysteresis	
for threshold U_{1}	5 V
for threshold U_{2}	5 V
activation time	
for threshold U_{1}	1.5 s
for threshold U_{2}	0.1 s
return time	
for threshold U_{1}	1.5 s
for threshold U_{2}	1.5 s
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

CP-721 programmable, without time lock

power supply	$150 \div 450 \mathrm{~V} \mathrm{AC}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
tripping voltage thresholds/step	
lower UL	$150 \div 210 \mathrm{~V} / 5 \mathrm{~V}$
upper UH	$230 \div 260 \mathrm{~V} / 5 \mathrm{~V}$
voltage hysteresis	
for threshold UL	5 V
for threshold UH	5 V
activation time/step	
for threshold UL	$2 \div 10 \mathrm{~s} / 1 \mathrm{~s}$
for threshold UH	$0.1 \div 1 \mathrm{~s} / 0.1 \mathrm{~s}$
return time	
for threshold UL	$2 \mathrm{~s} \div 9,5 \mathrm{~min}$.
for threshold UH	$2 \mathrm{~s} \div 9,5 \mathrm{~min}$.
setting accuracy	1 V
measurement accuracy	$\pm 1 \mathrm{~V}$
display	$3 \times$ segment LED $5 \times 9 \mathrm{~mm}$
contact signalling activation	yellow LED
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

CP-721-FPV

1-phase voltage relay, for photovoltaic systems

Voltage relay dedicated to work in photovoltaic systems. In the case of detecting an exceedance of the preset voltage level, the output relay will switch on, with the help of which it is possible to switch on an additional consumer (e.g. boiler), thus increasing the self-consumption of energy in the home installation.

power supply	$3 \times(50 \div 450 \mathrm{~V})+\mathrm{N}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	8 A
power supply control	$4 \times$ LED
voltage activation threshold	
lower UL	$150 \div 210 \mathrm{~V}$
upper UH	$230 \div 260 \mathrm{~V}$
return voltage hysteresis	
for threshold UL and UH	5 V
activation time	
for threshold UL (adjustable)	$0.5 \div 10 \mathrm{~s}$
for threshold UH	0.1 s
return time	
for threshold UL and UH	1.5 s
power consumption	1.7 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

* The note is on the first page of the Chapter 28 (p. 165)

Under-voltage

CP-733 3×NC contacts/ CP-734 3×NO contacts

Functioning

At correct line voltages, the contacts remain open (CP-733) or closed (CP-734). The loss of voltage in a phase or its drop below the set trip voltage threshold will switch on (CP-733) or open (CP-734) the contact corresponding to that phase. Disconnection (CP-733) or closure (CP-734) of the contact will occur automatically after the phase voltage returns or the voltage rises by 5 V above the set threshold (by the voltage hysteresis value).

CP-733

CP-734

power supply	$3 \times(50 \div 450 \mathrm{~V})+\mathrm{N}$
contacts	
CP-733	separated $3 \times N \mathrm{NC}$
CP-734	separated $3 \times \mathrm{NO}$
maximum load current (AC-1)	$3 \times 8 \mathrm{~A}$
power supply control	$4 \times$ LED
activation voltage (adjustable)	$170 \div 210 \mathrm{~V}$
voltage hysteresis	5 V
activation time/return	$0.5 \mathrm{~s} / 1.5 \mathrm{~s}$
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

CP-500

power supply $3 \times 500 \mathrm{~V}$, without neutral wire

Functioning

When the mains voltage is correct, the contacts remain closed. Triggering any protection causes the sensor contacts to open.
The contacts will be closed automatically when the correct network parameters return.

power supply	$3 \times 500 \mathrm{~V}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
power supply control/status indication	$4 \times$ LED
voltage/activation asymmetry (adjustable)	$20 \div 80 \mathrm{~V}$
activation time on asymmetry (adjustable)	$1 \div 10 \mathrm{~s}$
voltage threshold/activation time	
upper	$580 \mathrm{~V} / 0.5 \mathrm{~s}$
lower	$420 \mathrm{~V} / 5 \mathrm{~s}$
voltage hysteresis	5 V
return time (adjustable)	$1 \div 15 \mathrm{~s}$
power consumption	1.4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
connection of contacts 1 and 2	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
$\begin{array}{ll}\text { terminal } L_{1}, L_{2}, L_{3} & 2.5 \mathrm{~m} \\ & 4.0 \mathrm{~m}\end{array}$	m^{2} screw terminals (cord) m^{2} screw terminals (wire)
tightening torque	0.5 Nm
dimensions	4 modules (70 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- Protection against phase loss;
- Protection against phase sequence change;
- Protection against phases asymmetry;
- Protection against rising of the voltage above 580 V ;
- Protection against dropping of the voltage below 420 V .

Automatic phase switches

Purpose

Automatic phase switches are designed to ensure the continuity of power supply to single-phase receivers in the event of a power phase loss or a drop in its parameters below the norm. They constitute a single-phase automatic transfer switching system. They are particularly useful in cases where a continuous supply of voltage with correct parameters is required, for example, refrigeration and air-conditioning equipment, computer and telecommunications networks, cable television, alarm systems, etc.

$\begin{aligned} & \text { t } \\ & \text { 은 } \\ & \end{aligned}$											\%
PF-421 TRMS	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	$160 \div 220 \mathrm{~V}$	240 280 V	$0.2 \div 200 \mathrm{~s}$	$\pm 1 \%$	L1/none*	for TH-35 rail	169
PF-431	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	195 V	280 V	$1.0 \div 1.5 \mathrm{~s}$	$\pm 1 \%$	L1	for TH-35 rail	169
PF-431-LED	$3 \times 230 \mathrm{~V}+\mathrm{N}$	$16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$	-	-	195 V	280 V	$1.0 \div 1.5 \mathrm{~s}$	$\pm 1 \%$	L1	for TH-35 rail	169
PF-432 TRMS	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	207 V (230V -10\%)	253 V (230V -10\%)	min 0.2 s	$\pm 1 \%$	L1	for TH-35 rail	170
PF-433 TRMS	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	207 V (230V -10\%)	253 V (230V-10\%)	min 0.2 s	$\pm 1 \%$	-	for TH-35 rail	170
PF-434 TRMS	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	$160 \div 220 \mathrm{~V}$	$240 \div 280 \mathrm{~V}$	min 0.2 s	$\pm 1 \%$	L1	for TH-35 rail	170
PF-435 TRMS	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	$160 \div 220 \mathrm{~V}$	$240 \div 280 \mathrm{~V}$	$\min 0.2 \mathrm{~s}$	$\pm 1 \%$	-	for TH-35 rail	170
PF-441	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	195 V	250 V	$0.5 \div 0.8 \mathrm{~s}$	$\pm 1 \%$	L1	for TH-35 rail	171
PF-451	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	$150 \div 210 \mathrm{~V}$	230 $\div 270 \mathrm{~V}$	$0.5 \div 0.8 \mathrm{~s}$	$\pm 1 \%$	-	for TH-35 rail	171
PF-452	$3 \times 230 \mathrm{~V}+\mathrm{N}$	16 A	-	-	$150 \div 210 \mathrm{~V}$	$230 \div 270 \mathrm{~V}$	$0.5 \div 0.8 \mathrm{~s}$	$\pm 1 \%$	-	for TH-35 rail	172

Functioning

Three-phase voltage $(3 \times 400 \mathrm{~V}+\mathrm{N})$ is connected to the input terminals of the device. At the output of the relay will appear single-phase voltage $(230 \mathrm{~V})$ of one of the phases. The electronic circuit of the switch controls the values of the voltages of the supplied phases so that the output voltage is not less or more than the set values. The phase with the correct parameters is directed to the switch output.
The device measures the RMS value of the voltage (True RMS), which makes it ideal for modern automation systems, where the supply voltage is often distorted due to the operation of nearby devices with switching power supplies. Depending on the mode set, the L1 phase is the priority phase, or the system operates without phase priority (Tret set to ∞).

Operation with phase priority

In this mode, the L1 phase is the priority phase, and if its parameters are correct for the time set by the Tret knob, it will be connected to the output. If the L1 phase exceeds the upper or lower setting level, the L2 or L3 phase voltage will be connected to the output. If the L3 phase is attached to the output and the L2 phase returns to the correct parameters, it will be switched to the output (the priority of phases from highest to lowest is L1, L2, L3).
Operation without priority phase (Tret set to ∞).
In this mode, all phases have the same priority, which means that the first of the correct phases will be connected to the output. The output phase will be changed only when the output voltage goes beyond the range set by the Vmin and Vmax knobs.

power supply	$3 \times 230 \mathrm{~V}+\mathrm{N}$
minimum operating voltage (when supplied from one phase)	85 V
maximum phase voltage	420 V
working frequency	$45 \div 55 \mathrm{~Hz}$
cooperation with power generators	no
maximum load current (AC-1)	16 A
mechanical strength contacts	1×10^{7}
electrical strength contacts ($16 \mathrm{~A} / \mathrm{AC}-1$)	1×10^{5}
signal sampling frequency	4 kHz
executive element	$3 \times$ relay
return hysteresis	10 V
setting range Vmin	$160 \div 220 \mathrm{~V}$
setting range Vmax	$240 \div 280 \mathrm{~V}$
voltage measurement error	$\pm 1 \%$
switching time	max 200 s
return time	$5 \div 300 \mathrm{~s}$
input voltage indication	$3 \times$ LED
power consumption	1.5 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

PF-431/PF-431-LED

with a priority phase

Functioning

A three-phase voltage $(3 \times 400 \mathrm{~V}+\mathrm{N})$ is applied to the input of the switch. The switch output is supplied with a single-phase voltage (230 V AC), which means phase voltage of one of the phases. The electronic circuit of the switch controls the voltage values of the applied phases so that the output voltage is not less than 195 V . The phase with the correct parameters is directed to the switch output. The L_{1} is a priority phase, which means if its parameters are correct, this phase will always be switched to the output. In case of a voltage drop in the phase L_{1} below 190 V or its loss, the electronic circuit will switch L_{2} phase to the output (if its parameters are correct). In the case of the simultaneous absence of correct voltages in the L_{1} and L_{2} phases, the L_{3} phase will be switched to the output. If the correct supply voltage in phase L_{1} (above 195 V) returns, the system will switch this phase to the output.

power supply	$3 \times 230 \mathrm{~V}+\mathrm{N}$
output voltage	230 V AC
maximum load current (AC-1)*	
PF-431	<16 A
PF-431-LED	$<16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms})$
activation threshold $\mathrm{L}_{1}, \mathrm{~L}_{2}$	<195 V
activation threshold L_{3}	<190 V
voltage hysteresis	5 V
voltage measurement error	$\pm 1 \%$
switching time	0,3 s
input voltage indication	$3 \times$ LED
power consumption	1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

[^13]for use with a contactor, with priority phase, with fixed lower (207 V) and upper (253 V) tripping thresholds

PF-433 TRMS

for use with a contactor, without priority phase, with fixed lower (207 V) and upper (253 V) tripping thresholds

PF-434 TRMS

for use with a contactor, with priority phase, with adjustable lower ($160 \mathrm{~V} \div 220 \mathrm{~V}$) and upper ($240 \mathrm{~V} \div 280 \mathrm{~V}$) tripping thresholds

PF-435 TRMS

 for use with a contactor, without priority phase, with adjustable lower ($160 \mathrm{~V} \div 220 \mathrm{~V}$) and upper ($240 \mathrm{~V} \div 280 \mathrm{~V}$) tripping thresholds
Functioning

Three-phase voltage $(3 \times 230 \mathrm{~V}+\mathrm{N})$ is connected to the input terminals of the device. At the output of the relay there will be a single-phase voltage $(230 \mathrm{~V})$ of one of the phases. The electronic circuit of the switch controls the voltage values of the input phases so that the output voltage is not lower or higher than the set values. The phase with the correct parameters is directed to the switch output. The device measures the rms value of the voltage (True RMS), making it ideal for modern automation systems, where the supply voltage is often distorted due to the operation of nearby devices with switching power supplies. The device has a control contact for continuous monitoring of the output state. Thanks to this, it is possible to detect such anomalies as a stuck contact of any of the contactors or a damaged contact. This protection also prevents the contactor from switching on if the voltage at the output is generated from outside.

Applies to PF-432 TRMS and PF-434 TRMS:

These devices have a priority phase (L1). This means that if its parameters are correct for a minimum of 5 s , it will be connected to the output, even if the other phases are correct. If the L1 phase has invalid parameters, then the voltage of the L2 or L3 phase will be connected to the output in turn, depending on which phase is correct.

Applies to PF-433 TRMS and PF-435 TRMS:
(I)

All phases have the same priority, which means that the first of the correct phases will be attached to the output. The output phase will be changed only when it exceeds the allowed parameters.

	PF-432 TRMS	PF-433 TRMS	PF-434 TRMS	PF-435 TRMS
power supply	$3 \times 230 \mathrm{~V}+\mathrm{N}$			
minimum operating voltage when supplied from one phase	85 V	85 V	85 V	85 V
maximum phase voltage	420 V	420 V	420 V	420 V
supply voltage frequency	$45 \div 55 \mathrm{~Hz}$			
cooperation with power generators	-	-	-	-
maximum load current	16A (AC-1)	16A (AC-1)	16A (AC-1)	16A (AC-1)
mechanical strength contacts	1×10^{7}	1×10^{7}	1×10^{7}	1×10^{7}
electrical strength contacts	$(16 \mathrm{~A} / \mathrm{AC}-1) 1 \times 10^{5}$	$(16 \mathrm{~A} / \mathrm{AC}-1) 1 \times 10^{5}$	(16A/AC-1) 1×10^{5}	$(16 \mathrm{~A} / \mathrm{AC}-1) 1 \times 10^{5}$
TrueRMS measurement	-	-	-	-
signal sampling frequency	2 kHz	2 kHz	2 kHz	2 kHz
executive element	$3 \times$ relay	$3 \times$ relay	$3 \times$ relay	$3 \times$ relay
hysteresis	5 V	5 V	5 V	5 V
higher activation threshold	$253 \mathrm{~V}(230 \mathrm{~V} \pm 10 \%)$	$253 \mathrm{~V}(230 \mathrm{~V} \pm 10 \%)$	$160 \div 220 \mathrm{~V}$	$160 \div 220 \mathrm{~V}$
lower activation threshold	$207 \mathrm{~V}(230 \mathrm{~V} \pm 10 \%)$	207V ($230 \mathrm{~V} \pm 10 \%$)	240 280 V	$240 \div 280 \mathrm{~V}$
voltage measurement error	1\%	1\%	1\%	1\%
maximum switching time	200 ms	200 ms	200 ms	200 ms
return time	5 s	5 s	5 s	5 s
working mode	with priority phase	without priority phase	with priority phase	without priority phase
output voltage indication	$3 \times$ LED	$3 \times$ LED	$3 \times$ LED	$3 \times$ LED
power consumption	<1.5 W	$<1.5 \mathrm{~W}$	<1.5 W	$<1.5 \mathrm{~W}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$			
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals			
tightening torque	0.5 Nm	0.5 Nm	0.5 Nm	0.5 Nm
dimensions	3 modules (52.5 mm)			
mounting	for TH-35 rail	for TH-35 rail	for TH-35 rail	for TH-35 rail
ingress protection	IP20	IP20	IP20	IP20

Functioning

The switch in the direct connection is used to power a single-phase circuit whose load does not exceed 16 A . For circuits with a load of more than 16 A, we use a system of a switch and three contactors with appropriately selected load capacity.
A three-phase voltage $(3 \times 400 V+N)$ is applied to the input $\left(L_{1}, L_{2}, L_{3}, N\right)$ of the switch. The switch output ($\left.T_{1}, T_{2}, T_{3}\right)$ is supplied with a single-phase voltage (230 VAC), which means phase voltage of one of the phases. The electronic circuit of the switch controls the voltage values of the supplied phases. The phase with the correct parameters is directed to the output. The L_{1} is a priority phase, which means if its parameters are correct, this phase will always be switched to the output.
In case of a voltage drop in the phase L_{1} or its loss, the electronic circuit will switch L_{2} phase to the output (if its parameters are correct). In the case of the simultaneous absence of correct voltages in the L_{1} and L_{2} phases, the L_{3} phase will be switched to the output.
If the correct supply voltage in phase L_{1} returns, the system will switch this phase to the output. Switching time (the appearance of the voltage at the output) after the loss of the currently switched-on phase is between 0.5 and 0.8 seconds (during this time the receivers are not supplied with power). The "Uk" input is used to control the switched-on voltages. The system allows only one phase to be switched on. This prevents the two phases from being simultaneously fed to the output, which could cause a phase-to-phase short-circuit. In the event of a permanent short-circuit of the contactor contacts, the system will not switch to another contactor despite the incorrect voltage in this phase. After switching on the supply voltage (at least one phase) for 2 seconds, the system examines the correctness of the applied voltages and only after that time will it switch on the phase to the output.

power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
output voltage	230 V AC
maximum load current (AC-1)	
direct connection	16 A
with contactors	to the load capacity of contactor contacts
activation threshold	
lower	195 V
upper (adjustable)	250 V
voltage hysteresis	5 V
voltage measurement error	$\pm 1 \%$
switching time	$0.5 \div 0.8 \mathrm{~s}$
power indication	green LED
indication of the selected phase	$3 \times y$ ellow LED
power consumption	1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	4 modules (70 mm)
mounting	for TH-35 rail
ingress protection	IP20

PF-451
 for use with a contactors, without a priority phase, with adjustable lower $(150 \div 210 \mathrm{~V})$ and upper ($230 \div 260 \mathrm{~V}$) actuation threshold

Functioning

The switch in the direct connection is used to power a single-phase circuit whose load does not exceed 16 A . For circuits with a load of more than 16 A, we use a system of a switch and three contactors with appropriately selected load capacity.
A three-phase voltage $(3 \times 400 V+N)$ is applied to the input $\left(L_{1}, L_{2}, L_{3}, N\right)$ of the switch. The switch output ($\left.T_{1}, T_{2}, T_{3}\right)$ is supplied with a single-phase voltage (230 V AC), which means phase voltage of one of the phases. The electronic circuit of the switch controls the voltage values of the supplied phases. The phase with the correct parameters is directed to the output. The sequence of phase switching is not specified - the phase with the best parameters is always directed to the output. The switch to the next good phase will be made only after the quality of the parameters of this phase has decreased. Switching time (the appearance of the voltage at the output) after the loss of the currently switched-on phase is between 0.5 and 0.8 seconds (during this time the receivers are not supplied with power).

The "Uk" input is used to control the switched-on voltages. The system allows only one phase to be switched on. This prevents the two phases from being simultaneously fed to the output, which could cause a phase-to-phase short-circuit. Also, in case of damage to the contactor (for example as a result of a break in the coil circuit, a suspended or burnt operating contact), the receiver will switch to another phase, despite the fact that the voltage at this phase is correct. In the event of a permanent short-circuit of the contactor contacts, the system will not switch to another contactor despite the incorrect voltage in this phase. After switching on the supply voltage (at least one phase) for 2 seconds, the system examines the correctness of the applied voltages and only after that time will it switch on the phase to the output.

power supply	$3 \times 400 \mathrm{~V}+\mathrm{N}$
output voltage	230 V AC
maximum load current (AC-1)	
direct connection	16 A
with contactors	to the load capacity of
contactor contacts	

phase voltage output with adjustable lower ($150 \div 210 \mathrm{~V}$)
and upper ($230 \div 270 \mathrm{~V}$) threshold and with the actuation time ($2 \div 10 \mathrm{~s}$)
Functioning
A three-phase voltage $(3 \times 400 V+N)$ is applied to the input $\left(L_{1}, L_{2}, L_{3}, N\right)$ of the switch. The electronic circuit of the switch controls the voltage values of the supplied phases. Two phases with the correct parameters are directed to the outputs. The sequence of phase switching is not specified. After a drop in the value of the parameters of one phase, the switchover to the next good phase takes place. Switching time (the appearance of the voltage at the output) after the loss of the currently switched-on phase is between 0.5 and 0.8 seconds (during this time the receivers are supplied with power). The "Uk" input is used to control the switching of the contacts and protects against simultaneous supplying of two phases to one output in case of the relay contacts are glued together.
The switch can operate in two receiving options: phase-to-phase 400 VAC voltage or $2 \times 230 \mathrm{VAC}$ phase voltages.
In the case of the remaining one correct phase, the controller operates according to the selected function:
Function A (no P-P jumper). A correct phase is directed to both R_{1} and R_{2} output. For the phase-to-phase receiving option, this means no 400 V power supply.
Function B (P-P jumper). A correct phase is directed only to R_{1} output.
Application: priority controller: if it is not possible to connect all devices to one phase at the same time due to the load, then the key single-phase receivers are connected to the output R_{1} and will be powered whenever at least one phase is good. Secondary receivers will be connected to the output R_{2} and will only work when at least two phases of the power supply are correct. The operating option is set via a jumper at the P - P terminals.

Automatic transfer switches

Purpose

Automatic transfer switches are designed to control the parameters and correctness of power supply lines and automatic switching of power supply sources of the facility in case of a drop in power supply line parameters or a total loss of voltage in this line.

SZR-277

Purpose

The SZR-277 automatic transfer switch is designed for automatic switching of power sources operating in the following configuration: N1+N2 or N1+G in single-phase networks.

Wiring diagram

- Control of supply line parameters;
- Protection of the receivers from too high or too low voltage;
- Control of the relay contacts and protection against the possibility of a short circuit between the generator and the mainline;
- Generator startup control;
- Emergency external safety switch;
- Backup power supply for the controller from the battery along with the battery charging system.

supply voltage	
main line (terminals 1-2)	$195 \div 265 \mathrm{~V} / 50 \mathrm{~Hz}$
generator (terminals 1-3)	$195 \div 265 \mathrm{~V} / 50 \mathrm{~Hz}$
battery* (terminals 1-4)	$10 \div 14.5 \mathrm{~V}$ DC
maximum allowable voltage (terminals 1-2, 1-3)	400 V
maximum switching current of internal contacts	$\begin{aligned} & 16 \mathrm{~A}(\mathrm{AC}-1) / 250 \mathrm{~V} \\ & 3 \mathrm{~A}(\mathrm{AC}-15) / 250 \mathrm{~V} \end{aligned}$
contact	$3 \times \mathrm{NO}$
voltage threshold**	
lower (adjustable)	150 210 V
upper	270 V
hysteresis	5 V
switch-off time	
for lower threshold (adjustable)	$1 \div 15 \mathrm{~s}$
for upper threshold	0.3 s
switching time	0.3 s
time of qualifying the line as good	10 s
start time of the generator	$5 \div 120$ s
power consumption	4 W
working temperature	$10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	3 modules (52 mm)
mounting	for TH-35 rail
ingress protection	IP20
* recommended battery type: RLA, 12 V v ** when the voltage exceeds 300 V , the l seconds	2 Ah capacity; connected in no more than 0.

Connection at the current <16 A (AC-1)

Connection (with the contactors) at the current above $16 \mathrm{~A}(\mathrm{AC}-1)$

Work modes

SZR-278

Purpose
The SZR-278 automatic transfer switch is designed for automatic switching of power sources operating in the following configuration: N1+N2 or N1+N2+S.

Functions

- Phase presence check;
- Phase sequence check;
- Phase asymmetry check;
- Monitoring of minimum and maximum phase voltage;
- Control of contactors or motorized switches;
- Status of the contactors check;
- Monitoring of overcurrent circuit breakers operation;
- Can be powered from an external power source;
- Operation in the voltage range from 24 to 450 V ;
- Can be used in 1-phase and 3 -phase circuits;

controlled lines	$3 \times 400 \mathrm{~V}+\mathrm{N}$
supply voltage	$24 \div 264 \mathrm{~V} \mathrm{AC}$
maximum voltage	450 VAC
frequency	$45 \div 55 \mathrm{~Hz}$
number of controlled lines	2
number of relay outputs	$4 \times \mathrm{NO} / \mathrm{NC}$
maximum coil current of contactor	2 A
lower voltage threshold	$150 \div 210 \mathrm{~V} \mathrm{AC}$
upper voltage threshold	270 V AC
lower switch-off time	$1 \div 15 \mathrm{~s}$
upper switch off time	0.3 s
line switching time	$0.1 \div 5 \mathrm{~s}$
effective voltage unbalance	80 V
switch-off time at voltage drop	0.1 s
power consumption	4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	6 modules (105 mm)
mounting	for TH-35 rail
ingress protection	IP20

- Automatic activation of backup power according to the specified algorithm;
- Protection of receivers against voltages above 400 V ;
- Setting the operating time of the automatic transfer switch system after shutdown and restoration of the main power supply;
- Manual control of actuators;
- Indication of presence and correctness of voltages at the inputs;
- Status indicators (ON, OFF, Failure) of actuators;
- Software lock protecting against simultaneous activation of contactors;
- Common neutral wire for both lines.

Wiring diagram

2-4 line N1
10-12 line N2
13-15 voltage control
16 safety switch
17 error reset
19-27 control of output devices
28-30 auxiliary control input

Work modes

Rec.

Rec. 1

SZR-279

Purpose
The SZR-279 automatic transfer switch is designed for automatic switching of power supply sources in one or two supply lines with the possibility of additional control of an emergency generator.

Functions

- Phase presence check;
- Phase sequence check;
- Phase asymmetry check;
- Monitoring of minimum and maximum phase voltage;
- Control of contactors or motorized switches;
- Status of the contactors check;
- Monitoring of overcurrent circuit breakers operation;
- Start signal of the generator;
- ALARM output;
- PIN code to block access to controller settings;
- Can be powered from an external power source;
- Operation in the voltage range from 24 to 450 V ;
- Can be used in 1-phase and 3-phase circuits;

controlled lines	$3 \times 400 \mathrm{~V}+\mathrm{N}$
supply voltage	$24 \div 264$ V AC
maximum voltage	450 VAC
frequency	$45 \div 55 \mathrm{~Hz}$
number of controlled lines	3
number of relay outputs	$4 \times \mathrm{NO} / \mathrm{NC}, 1 \times \mathrm{NO}$
maximum coil current of contactor	2 A
lower voltage threshold	$150 \div 210 \mathrm{~V} \mathrm{AC}$
upper voltage threshold	230 -300 V AC
lower switch-off time	$2 \div 30 \mathrm{~s}$
upper switch off time	$0.3 \div 10 \mathrm{~s}$
line switching time	$0.3 \div 30 \mathrm{~s}$
effective voltage unbalance	$20 \div 100 \mathrm{~V}$
start-up time of the generator	$5 \div 100 \mathrm{~s}$
shutdown time of the generator	$10 \div 200 \mathrm{~s}$
switch-off time at voltage drop	4 s
power consumption	6 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	6 modules (105 mm)
mounting	for TH-35 rail
ingress protection	IP20

- Automatic activation of backup power according to the specified algorithm;
- Protection of receivers against voltages above 400 V ;
- Setting the operating time of the automatic transfer switch system after shutdown and restoration of the main power supply;
- Manual control of actuators;
- Indication of presence and value of voltages at the inputs;
- Status indicators (ON, OFF, Failure) of actuators
- Display of operating modes;
- Software and the electrical lock protecting against simultaneous activation of contactors;
- Separated signalling and alarm outputs;
- Monitoring of the backup line from the generator.
\square

2-4 line N1
6-8 line N2
12 auxiliary power supply
13-15 voltage control
17 error indication
18-20 current contro
21 safety switch
22-28 control of output devices
29-30 start-up of the generator

Rec. 1

Rec. 1

Rec. 1

SZR-280/SZR-280/12

Purpose

The SZR-280 automatic transfer switch is designed for automatic switching of power sources operating in the following configuration: N1+N2 or N1+G, with load shedding support and event recording. Configuration of the controller by means of a computer application.

controlled lines	2
controller power supply	
supply voltage	
SZR-280	$85 \div 264$ V AC
SZR-280/12	$11 \div 14 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
power consumption	4 W
input voltage measured	
rated voltage	230 V
measuring range	80 -300 V
frequency	$45 \div 55 \mathrm{~Hz}$
accuracy	1% of the full scale +1 digit
relay outputs	
contacts	$5 \times \mathrm{NO}$
maximum load current (AC-1)	$5 \times 8 \mathrm{~A}$
status indication	$8 \times$ LED
working temperature	$10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.3 Nm
dimensions	$100 \times 75 \times 110 \mathrm{~mm}$
mounting	for TH-35 rail
ingress protection	IP20

Functions

- Simultaneous control of two power lines;
- Measurement of True RMS values;
- Galvanic separation of measuring inputs of power supply lines for contactor control;
- Support for the emergency diesel generator;
- Automatic mode operation with the ability to set a priority line;
- The load shedding is carried out by dividing the receiving line into 2 parts, with the ability to freely define the load shedding cases;
- Independent setting for each line of the voltage range for which the line is qualified as good and setting of voltage hysteresis for the line qualification;
- Setting the time of qualifying the line as good and as bad;
- Accelerated qualification of a line as bad in case of a total loss of voltage on the line;
- Definition of switch-on and switch-off times of the controlled contactors;
- An external safety circuit blocking the operation of the controller can be connected;
- Configuration of the controller via a PC using a dedicated application;
- Event logging with the ability to export the log file to a PC.

$1-7$	N1 line
$9-15$	N2 line
$13-15$	voltage control
$16-18$	controller power supply
$20-25$	outputs control
$29-30$	controller lock

Work modes

Rec.

Network-aggregate switches

Purpose

Modular network-aggregate installation switches implement a 1-0-2 switching program, so that it is possible, for example, to connect one of the two input lines to the output, or completely disconnect the circuits.

PSA-263

2-track, network-aggregate installation switch

rated voltage	$230 / 400 \mathrm{~V}$
rated current [AC-21B/AC-22A]	63 A
rated frequency	$50 \div 60 \mathrm{~Hz}$
number tracks	2 P
switching program	$1-0-2$
electrical strength	5000 cycles
mechanical strength	15000 cycles
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$10 \mathrm{~mm}^{2}$ screw terminals (cord)
	$16 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	1.8 Nm
dimensions	4 modules $(70 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Wiring diagram

rated voltage	$230 / 400 \mathrm{~V}$
rated current $[\mathrm{AC}-21 \mathrm{~B} / \mathrm{AC}-22 \mathrm{~A}]$	63 A
rated frequency	$50 \div 60 \mathrm{~Hz}$
number tracks	4 P
switching program	$1-0-2$
electrical strength	5000 cycles
mechanical strength	15000 cycles
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$10 \mathrm{~mm}^{2}$ screw terminals (cord)
	$16 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	1.8 Nm
dimensions	4 modules $(70 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Wiring diagram

Glass touch buttons with proximity function

DOMINO buttons
are made
of high-quality polished glass. Chamfered edges give them a refined look. The classic colors of black and white make DOMINO buttons blend perfectly into both modern and classical interiors, adding a discreet touch of character. Buttons are equipped with proximity sensors. When you bring your hand close, the touch fields light up.

Section VIII
 Current protection

Chapter 32
Power consumption limiters 182
Chapter 33
Priority relays 186
Chapter 34
Current relays 189
Chapter 35
Microprocessor motor relays 192
Chapter 36
Fuse modules 193

Power consumption limiters

Purpose

Power consumption limiters are used to disconnect the power supply of the electrical installation circuit in case of exceeding the set value of the power consumed by the receivers in this circuit. They protect against unauthorized connection and theft of electrical power.

Functioning

The power limiter allows you to power the circuit when the total power of the receivers in the controlled circuit is lower than the set power. Exceeding the set power consumption threshold in a controlled circuit results in the disconnection of the power supply to this circuit. The power supply will be restored automatically after a set time.

OM-623

with an adjustable return time, for circuits with current converters

power supply	
maximum load current	$165 \div 265 \mathrm{VAC}$
(AC-1)	16 A
(AC-3)	2 A
power limit (adjustable)	$20 \div 2000 \mathrm{~W}$
activation delay	2 s
return power supply time (adjustable)	$10 \div 100 \mathrm{~s}$
power consumption	$<1 \mathrm{~W}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

0M-1 with a fixed return time

power supply	$195 \div 253$ V AC
maximum load current (AC-1)	16 A
power limit	200 2000 VA
activation delay	$1.5 \div 2 \mathrm{~s}$
return power supply hysteresis	2\%
return power supply time	30 s
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP20

OM-2 with an adjustable return time

power supply	$195 \div 253 \mathrm{VAC}$
maximum load current (AC-1)	16 A
power limit	$200 \div 2000 \mathrm{VA}$
activation delay	$1.5 \div 2 \mathrm{~s}$
return power supply hysteresis	2%
return power supply time	$4 \div 150 \mathrm{~s}$
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface-mounted
ingress protection	IP20

0M-631
 with a fixed return time

Purpose

This limiter is designed for resistive loads, such as electric heaters and classic incandescent lamps.
For other load types, the use of the OM-632 limiter is recommended.

OM-632
 for circuits with current converters (such as an LED) and adjustable return time

Purpose

This limiter is designed to protect any electrical circuits, including those with the current converters such as compact fluorescent lamps, electronic transformers.

power supply	$195 \div 253 \mathrm{VAC}$
contact	$1 \times \mathrm{NO}$
maximum load current	16 A
AC-1	4 A
AC-3	$200 \div 2000 \mathrm{VA}$
power limit	$1 \div 2 \mathrm{~s}$
activation delay	2%
return power supply hysteresis	$10 \div 100 \mathrm{~s}$
return power supply time (adjustable)	0.8 W
power consumption	$-25 \div 50^{\circ} \mathrm{C}$
working temperature	
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	
mounting	
ingress protection	2 modules $(35 \mathrm{~mm})$

OM-611

for cooperation with a current transformer and with an adjustable tripping and return time

Purpose

This relay is designed to cooperate with a current transformer whose primary circuit is connected to the measured circuit, and the output to the OM measurement terminals, which allows to control circuits of any load capacity and to set the actual threshold of relay activation higher than 5 A (IOM). The range of the measured current will depend on the ratio of the transformer, for example from 5 A to 50 A with a 10:1 ratio for 50/5 A transformer.

power supply	$195 \div 253 \mathrm{VAC}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	8 A
activation threshold (adjustable)	$0.5 \div 5 \mathrm{~A}$
activation delay (adjustable)	$2 \div 40 \mathrm{~s}$
return power supply hysteresis	2%
return power supply time (adjustable)	$15 \div 300 \mathrm{~s}$
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	on TH-35 rail
ingress protection	IP20

OM-616

to a flush-mounted box, with a voltage relay function

Purpose

Power limiter designed for direct control of the power of plug sockets. Useful in public buildings, hotels, boarding houses, hospitals, etc. Reduces power consumption from a single outlet to low values. An additional function of a voltage relay disconnects the output when the supply voltage exceeds 270 V or drops below 150 V .

power supply	$85 \div 265 \mathrm{~V} \mathrm{AC}$
contact	separated 1×NO
maximum load current (AC-1)	5 A
power	
power limit (adjustable)	10 $\div 1000 \mathrm{~W}$
activation time/return time	$4 \mathrm{~s} / 30 \mathrm{~s}$
voltage	
lower activation threshold UL	150 V
upper activation threshold UH	270 V
lower activation time UL	10 s
upper activation time UH	0.3 s
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	¢54 ($48 \times 43 \mathrm{~mm}$), h= 20 mm
mounting	in flush mounted box $\varnothing 60$
ingress protection	IP20

OM-630 3-phase, direct measurement up to 50 kW

Functions

- Measurement of the active power of a three-phase system;
- Control of asymmetry, presence, and sequence of the phases;
- Short-circuit protection;
- Priority relay function;
- The function of a three-phase voltage relay;
- Time lock for the operation of the limiter due to frequent exceeding of the setting threshold;
- Indication of exceeding the power limit value;
- Adjustment of the tripping and return times short circuit protection.

power supply	$3 \times(50 \div 450 \mathrm{~V})+\mathrm{N}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
power	
power limit (adjustable)	$5 \div 50 \mathrm{~kW}$
set-up step	0.5 kW
activation time ToFf (adjustable)	$1 \div 240$ s
return time Ton (adjustable)	$2 \div 3600 \mathrm{~s}$
voltage	
lower activation threshold UL	<160 V
upper activation threshold UH	>260 V
lower activation time UL	5 s
upper activation time UH	0.1 s
measurement error	
voltage $50 \div 300 \mathrm{~V}$	<2\%
current 3 -100 A	<3\%
through-hole diameter	10 mm
power consumption	$\leq 1.5 \mathrm{~W}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	6 modules (105 mm)
mounting	on TH-35 rail
ingress protection	IP20

OM-633

power supply	$195 \div 253 \mathrm{VAC}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	16 A
power	
power limit (adjustable)	$1 \div 10 \mathrm{~kW}$
activation time (adjustable)	$1 \div 180 \mathrm{~s}$
return time (adjustable)	$4 \div 360$ s
voltage	
lower activation threshold UL	150 210 V
upper activation threshold UH	$230 \div 260 \mathrm{~V}$
lower activation time UL	5 s
upper activation time UH	0.3 s
through-hole diameter	5 mm
power consumption	2.5 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	on TH-35 rail
ingress protection	IP20

Functions

- An adjustable threshold of tripping power $1 \div 10 \mathrm{~kW}$;
- Protection against the drop of U l power supply voltage ($150 \div 210 \mathrm{~V}$);
- Protection against the increase of $U_{н}$ power supply voltage (230 $\div 260 \mathrm{~V}$);
- Counter of relay actuations with automatic disconnection of system power supply after exceeding a set number of actuations;
- Automatic lock of the system power supply for 10 minutes in the case the power was exceeded fivefold;
- Automatic power-off when power consumption is 8 times higher than the set threshold value;
- Automatic power-off when power consumption is greater than 16 kW;
- Adjustable actuation time ($1 \mathrm{~s} \div 3 \mathrm{~min}$.);
- Adjustable reconnection time ($4 \mathrm{~s} \div 6 \mathrm{~min}$.);
- LED display for indicating power consumption and device configuration.

OMS-635 with a staircase timer

Purpose

OMS-635 is a power limiter integrated with an automatic staircase lighting time switch. It is designed to keep the lighting switched on for a preset time, for example in corridors or staircases. After the preset time has elapsed, the lighting will be automatically switched off. In addition, the integrated power limiter protects the lighting circuit from unwanted use of electricity from the lighting system. An additional output enables the connection of controlled circuits regardless of whether the lighting is switched on or off. In case the set power has been exceeded in any of the circuits, both are switched off for 30 seconds.

Priority relays

Purpose

Priority relays are used, among others, when to the current circuit are connected at least 2 high-power receivers, which can work independently, and their simultaneous operation would cause the activation of current protections.

Functioning

Using the potentiometer we can set the value of the current consumption in the priority circuit above which the relay disconnects the non-priority circuit. A drop in the current consumption in the priority circuit below the set threshold value will automatically switch on the non-priority circuit. If a priority receiver is already switched on, the relay will prevent the non-priority receiver from being switched on.

For circuits with PR (priority relays), it is recommended to use overcurrent protections with longer activation time so that they do not overtake the PR reaction.

power supply	$195 \div 253$ V AC
maximum non-priority receivers current (AC-1)*	16 A
maximum priority receivers current (AC-1)	15 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
switching current	$2 \div 15 \mathrm{~A}$
switching delay	0.1 s
return hysteresis	10\%
return delay	0.1 s
power consumption	0.4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	1 module (18 mm)
mounting	on TH-35 rail
ingress protection	IP20

With a pass-through duct for the current cable of the receiver

Purpose

For priority circuits with a load capacity of more than 16 A , we use relays with a pass-through duct for the current wire of the receiver ($\max \varnothing=4$ mm), which is galvanically separated from the measuring system of the relay.

PR-603 adjustment range: 2ㄷ15 A

power supply	$195 \div 253$ V AC
maximum non-priority receivers current (AC-1)*	16 A
maximum priority receivers current (AC-1)	limited by the cross-section of the cable (maximum $\varnothing 4 \mathrm{~mm}$)
contact	separated $1 \times$ NO
switching current	$2 \div 15$ A
switching delay	0.1 s
return hysteresis	10\%
return delay	0.1 s
power consumption	0.4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	$50 \times 67 \times 26 \mathrm{~mm}$
mounting	surface
ingress protection	IP20

* a higher current requires an additional contacto

PR-613 adjustment range: 2:15 A

power supply maximum non-priority receivers current (AC-1)*	$195 \div 253 \mathrm{VAC}$ maximum priority receivers
current (AC-1)	limited by the cross-section of the cable
(maximum $\varnothing 4 \mathrm{~mm})$	

PR-615 adjustment range: 4 $4=30 \mathrm{~A}$

For use with a current transformer

PR-614

Purpose
The relay is adapted to work with a current transformer with a secondary current of 5 A .
The primary circuit of the transformer is connected to the current circuit of the priority receiver and the secondary circuit to the measuring terminals of the relay.
Example: For a priority receiver with a maximum load of 140 A, we use a current transformer with parameters of 150/5 A. The ratio is 30 .
When the scale value is set to 2 A , the relay will trip when the actual current value is $60 \mathrm{~A}(2 \mathrm{~A} \times 30=60 \mathrm{~A})$.

power supply	$195 \div 253 \mathrm{VAC}$
maximum non-priority receivers	
current (AC-1)*	16 A
current of the measuring input 4-6	$<5 \mathrm{~A}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
switching current	$0.5 \div 5 \mathrm{~A}$
switching delay	0.1 s
return hysteresis	10%
return delay	0.1 s
power consumption	0.4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$0.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	on TH-35 rail
ingress protection	$\mathrm{IP20}$

* a higher current requires an additional contactor

Interesting and practical

All PR (priority relays) can be used for three-phase networks and three-phase receivers. In the case of symmetrical receivers, it is enough to connect only 1 PR relay to any phase.
For an asymmetrical receiver, use one relay per each phase with a properly set tripping threshold depending on the load of the given phase.

Use of the PR in the symmetrical three-phase receiver system

Current relays

Purpose

The current relays are used to control the values of the current in circuits measured with contact switching function when the current exceeds the set threshold values.

EPP-618

with LED display and a pass-through duct for a current cable of the measured circuit

Functioning

The EPP-618 relay enables the display of values and control of single-phase AC current flowing in the measured circuit. The FUNC knob allows you to select one of the four operation diagrams shown in the diagrams below.

Functions

- Direct measurement of currents up to 50 A;
- Indirect measurement up to 999 A (using an external current transformer);
- 4 operating modes:
- indication of exceeding the preset value of current;
- indication of the current drop below the preset value;
- indication of exceeding the preset current with programmable hysteresis;
- indication of the current outside the specified range.

power supply	$195 \div 253 \mathrm{~V} \mathrm{AC}$
contact	separated $1 \times \mathrm{NO}, 1 \times \mathrm{NC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
adjustment range for direct measurement	$0.5 \div 50 \mathrm{~A}$
ratio adjustment range	1 $\div 999$
activation time adjustment range	$0.5 \div 60 \mathrm{~s}$
deactivation time adjustment range	$0.5 \div 60 \mathrm{~s}$
constant hysteresis	10\%
measurement error	<3\%
diameter of the pass-through duct	$\varnothing 4 \mathrm{~mm}$
power consumption	4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	3 modules (51 mm)
mounting	on TH-35 rail
ingress protection	IP20

Work functions
(A)

(B)

(C)

(D)

The value of the measured circuit current, above which the contact will be closed (position 11-12) is set with a potentiometer. A drop in the current below the set threshold value will automatically open the contact (position 11-10).

power supply	195 2533 V AC
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	16 A
current measuring circuit	limited by the cross-section of the cable
switching current (adjustable)	0,6 $\div 16 \mathrm{~A}$
return hysteresis	10\%
activation delay (adjustable)	$0.5 \div 10 \mathrm{~s}$
return delay	0.5 s
power consumption	0.4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	on TH-35 rail
ingress protection	IP20
pass-through duct	
diameter	$\emptyset 4 \mathrm{~mm}$
insulation	fibreglass impregnated with rubber
insulation breakdown voltage	$4 \mathrm{kV} / \mathrm{mm}$

EPP-620

4-function, with adjustable lower and upper tripping threshold

Functioning

The relay is adapted to work with a current transformer with a secondary current of 5 A . The primary circuit of the transformer is connected to the measured current circuit and the secondary circuit to the measuring terminals of the relay. The potentiometers are used to set the current thresholds: lower "Imin" and upper "Imax". The FUNC knob allows you to select one of the four operation diagrams shown in the diagrams below.

power supply	$85 \div 264 \mathrm{VAC}$
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
maximum current of the measuring input	5 A
current thresholds (adjustable)	
Imin	$0.02 \div 1 \mathrm{~A}$
Imax	$0.5 \div 5 \mathrm{~A}$
activation delay (adjustable)	$0 \div 20 \mathrm{~s}$
return hysteresis	10%
return time	0.5 s
power consumption	0.4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	
tightening torque	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
dimensions	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
mounting	0.5 Nm
ingress protection	3 modules $(52.5 \mathrm{~mm})$

If "Imin" is exceeded, the contact R_{1} is closed. After exceeding the "Imax" threshold, the contact R_{2} will be closed and the contact R_{1} will be open.
(C)

If "Imin" is exceeded, the contact R_{2} is closed. After exceeding the "Imax" threshold, the contact R_{1} will be closed. The R_{1} contact is locked until the RESET button is pressed. If the value exceeds "Imax", the contact R_{1} does not react to RESET.
(B)

If "Imin" is exceeded, the contacts R_{1} and R_{2} are closed. After exceeding the "Imax" threshold, the contact R_{1} will be open and the contact R_{2} will be closed.
(D)

After the value drops below "Imin" the contact R_{1} is closed. After exceeding the "Imax" threshold, the contact R_{2} will be closed and the contact R_{1} will be open. The R_{1} and R_{2} contacts are locked until the RESET button is pressed. If the value exceeds "Imax", the contact R_{2} does not react to RESET.

EPM-621

 energy consumption direction relay (imported/exported)
Purpose

EPM-621 is a bidirectional relay of the direction of active electricity consumption control designed for operation in a single-phase network. It indicates if the preset level of power consumed from the network, returned to the network or both is exceeded.

Functioning

- The operating function and the threshold value are set using the switches.
- The relay has 4 operating modes:

ON - test mode (switch-on of the output relay);
EXP - control of the power exported to the network (flow in the direction "Receiver" -> "Source");
IMP - control of power consumed from the network (flow in the direction "Source" -> "Receiver");
I/E - power control regardless of the flow direction;

- If the set power value is exceeded, the contact is closed (position 11-12);
- The power drop below the set threshold value will automatically open the contact (position 11-10).

$\xrightarrow{\text { SoURCE }}$

Microprocessor motor relays

EPS-D

Purpose

EPS is designed to protect three-phase electric motors of any power. It effectively protects motors in expensive and important applications such as pumps, hydrophores, elevators, conveyors, fans, centrifuges, compressors, etc.

Functioning

The relay controls the load in each phase. Based on the values of the settings entered by the user and on the actual current consumed by the motor, the microprocessor analyses the operating status of the motor. Comparing the operating status of the protected motor with the model characteristics in the memory of the processor, the EPS-D relay quickly and precisely detects any malfunctions in the operation of the motor and disconnects the motor power supply.

Functions

- Thermal protection
- Protection against frequent start-up;
- Protection against the idle run and dry run (under-current
- Protection against phase loss;
- Protection against phase sequence change;
- Protection against load asymmetry;
- Protection against mechanical overload;
- Protection against ground short-circuit.
- Protection against the stall of a rotor;

Optional functions

- Residual current protection against electric shock (an additional Ferranti transformer connected to the device enables the protection in the range $30 \mathrm{~mA} \div 500 \mathrm{~mA}$. Tripping time approx. 100 ms .)

Additional functions

- Motor load preview;
- A message indicating the cause of the protection tripping;
- Heat memory of the motor.

The relay displays the current value of one selected phase of the current on the LCD display. The current can be displayed in absolute values (A) or in relative values (\%) in relation to the set value of the current In.
In addition, it shows in real-time using the signs $(1>105 \% \ln),(1<95 \% \ln),(95 \% \ln \div 105 \% \mathrm{In})$ the range in which the measured current falls.
The relay measures the actual value of the current up to and including the 7 th harmonic. The current is measured with an accuracy of 1%.

Execution	Setting range
$5 \mathrm{~A}^{*}$	$1 \div 5 \mathrm{~A}$
20 A	$5 \div 25 \mathrm{~A}$
100 A	$20 \div 100 \mathrm{~A}$

power supply	$160 \div 265 \mathrm{~V} \mathrm{AC}$
frequency	50 Hz
main circuits insulation voltage	690 V AC
maximum load current (AC-15/DC-14)	2 A
effective current unbalance	$>30 \%$
delay at phase decay and unbalance	4 s
cable diameter max	$\neq 14$
power consumption	4 W
working temperature	$0 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.3 Nm
dimensions	$72 \times 59 \times 88 \mathrm{~mm}$
mounting	on TH-35 rail
ingress protection	IP20

Additional residual current and temperature protection

Fuse modules

Purpose

Fuse modules are used to protect electrical receivers against the effects of current rise above the nominal value of the current of the protected receiver.

Functioning

The fuse activation (fuse-link burnout) is indicated by the red LED.

BZ-1 1-socket

fuse	fuse link $\varnothing 5 \times 20 \mathrm{~mm}$
maximum voltage	250 V AC
maximum load current	6.3 A
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	on TH-35 rail
ingress protection	IP20

BZ-2 2-sockets

fuse	fuse link $\varnothing 5 \times 20 \mathrm{~mm}$
maximum voltage	250 V AC
maximum load current	6.3 A
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	on TH-35 rail
ingress protection	IP20

BZ-3 3-sockets

fuse	fuse link $\varnothing 5 \times 20 \mathrm{~mm}$
maximum voltage	250 V AC
maximum load current	6.3 A
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	on TH-35 rail
ingress protection	IP20

(!)
The F\&F trade offer includes fast (S) and slow blow (T) fuse-links with values ranging from 0.1 A to 6.3 A .
For more information, see p. 194.

fuse	fuse link $\varnothing 5 \times 20 \mathrm{~mm}$
maximum voltage	250 V AC
maximum load current	6.3 A
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	2 modules $(35 \mathrm{~mm})$
mounting	on TH-35 rail
ingress protection	IP20

Fuse-links

The F\&F trade offer includes fast (S) and slow blow (T) fuse-links with values ranging from 0.1 A to 6.3 A .

Fast blow fuses																	
Symbol	B1	B1,25	B1,6	B100	B160	B2	B2.5	B200	B250	B3,15	B315	B4	B5	B500	B6,3	B630	B800
Amperage	1 A	1.25 A	1.6 A	100 mA	160 mA	2 A	2.5 A	200 mA	250 mA	3.15 A	315 A	4 A	5 A	500 mA	6.3 A	630 mA	800 mA
Slow blow fuses																	
Symbol	B-1	B-1,25	B-1,6	B-100	B-160	B-2	B-2.5	B-200	B-250	B-3,15	B-315	B-4	B-5	B-500	B-6,3	B-630	B-800
Amperage	1 A	1.25 A	1.6 A	100 mA	160 mA	2 A	2.5 A	200 mA	250 mA	3.15 A	315 A	4 A	5 A	500 mA	6.3 A	630 mA	800 mA

Section IX

Power supply

Chapter 37
Power supplies and transformers 196
Chapter 38
Power indicators and multimeters 203
Chapter 39
Photovoltaic inverters 213
Chapter 40
Inverters and soft starters 214

Power supplies and transformers

Functioning

Power supplies and mains transformers are designed to safely convert 230 V AC mains voltage to low AC or DC voltages.

Product	Type	Input voltage	Output voltage	Maximum load current (AC-1)	Power output	Size of the housing	Page
Zl-1	pulse power supply	$85 \div 264$ V AC	5 V DC	10 A	50 W	6 modules (105 mm)	197
Zl-2	pulse power supply	$85 \div 264$ V AC	12 V DC	4 A	50 W	6 modules (105 mm)	197
ZI-3	pulse power supply	$85 \div 264$ V AC	18 V DC	3 A	50 W	6 modules (105 mm)	197
ZI-4	pulse power supply	$85 \div 264$ V AC	24 V DC	2 A	50 W	6 modules (105 mm)	197
Zl-5	pulse power supply	$85 \div 264 \mathrm{~V} \mathrm{AC}$	15 V DC	3.3 A	50 W	6 modules (105 mm)	197
ZI-6	pulse power supply	$85 \div 264$ V AC	48 V DC	1 A	50 W	6 modules (105 mm)	197
ZI-10-12P	pulse power supply	$180 \div 264$ V AC	12 V DC	0.85 A	10 W	flush-mounted box $\varnothing 60$	200
ZI-20-12P	pulse power supply	180 $\div 264 \mathrm{~V} \mathrm{AC}$	12 VDC	1.7 A	20 W	flush-mounted box $\emptyset 60$	200
ZI-11	pulse stabilizer	$8 \div 28 \mathrm{~V} \mathrm{AC} / 12 \div 37 \mathrm{~V} \mathrm{DC}$	5 VDC	3 A	15 W	3 modules (52.5 mm)	200
ZI-12	pulse stabilizer	$12 \div 28 \mathrm{~V} \mathrm{AC} / 16 \div 37 \mathrm{~V} \mathrm{DC}$	12 V DC	3 A	36 W	3 modules (52.5 mm)	200
ZI-13	pulse stabilizer	$18 \div 28 \mathrm{~V} \mathrm{AC} / 22 \div 37 \mathrm{~V} \mathrm{DC}$	18 V DC	3 A	54 W	3 modules (52.5 mm)	200
ZI-14	pulse stabilizer	$24 \div 28 \mathrm{~V} \mathrm{AC/} 28 \div 37 \mathrm{~V} \mathrm{DC}$	24 V DC	3 A	72 W	3 modules (52.5 mm)	200
ZI-15	pulse power supply	100 $\div 264 \mathrm{~V} \mathrm{AC}$	15 V DC	0.8 A	12 W	1 module (18 mm)	197
ZI-16	pulse power supply	100 $\div 264$ V AC	$13,5 \mathrm{~V}$ DC	0.9 A	12 W	1 module (18 mm)	197
ZI-17	pulse power supply	$100 \div 264$ V AC	14.5 V DC	0.8 A	12 W	1 module (18 mm)	197
ZI-20	pulse power supply	$100 \div 264 \mathrm{~V} \mathrm{AC}$	12 V DC	1 A	12 W	1 module (18 mm)	197
ZI-21	pulse power supply	$100 \div 264 \mathrm{~V} \mathrm{AC}$	24 VDC	0.5 A	12 W	1 module (18 mm)	197
ZI-22	pulse power supply	$100 \div 264$ V AC	12 VDC	2.5 A	30 W	3 modules (52.5 mm)	197
ZI-24	pulse power supply	100 $\div 264 \mathrm{~V} \mathrm{AC}$	24 VDC	1.25 A	30 W	3 modules (52.5 mm)	197
Z1-60-24	pulse power supply	$90 \div 264 \mathrm{~V} \mathrm{AC/} 120 \div 370 \mathrm{~V} \mathrm{DC}$	24 VDC	2.5 A	60 W	$130 \times 50 \times 90 \mathrm{~mm}$	199
Z1-61-12	pulse power supply	$180 \div 264 \mathrm{~V} \mathrm{AC}$	12 VDC	5 A	60 W	4.5 modules (78 mm)	198
Z1-61-24	pulse power supply	$180 \div 264$ V AC	24 VDC	2.5 A	60 W	4.5 modules (78 mm)	198
Z1-75-12	pulse power supply	$100 \div 240 \mathrm{~V} \mathrm{AC}$	12 VDC	6.25 A	75 W	$130 \times 57 \times 115 \mathrm{~mm}$	199
ZI-100-12	pulse power supply	$180 \div 264 \mathrm{~V} \mathrm{AC}$	12 VDC	8.3 A	100 W	6 modules (100 mm)	198
ZI-100-24	pulse power supply	$180 \div 264$ V AC	24 V DC	4.15 A	100 W	6 modules (100 mm)	198
ZI-120-12	pulse power supply	$100 \div 240 \mathrm{~V} \mathrm{AC}$	12 VDC	10 A	120 W	$130 \times 67 \times 115 \mathrm{~mm}$	199
ZI-120-24	pulse power supply	$90 \div 264 \mathrm{~V} \mathrm{AC/} 120 \div 370 \mathrm{~V} \mathrm{DC}$	24 VDC	5 A	120 W	$130 \times 75 \times 90 \mathrm{~mm}$	199
ZI-240-12	pulse power supply	180 -264 V AC	12 V DC	20 A	240 W	$130 \times 127 \times 115 \mathrm{~mm}$	199
ZI-240-24	pulse power supply	$90 \div 264 \mathrm{~V} \mathrm{AC/} 120 \div 370 \mathrm{~V} \mathrm{DC}$	24 V DC	10 A	240 W	$130 \times 110 \times 90 \mathrm{~mm}$	199
ZI-USB-5	USB power supply	$12 \div 40 \mathrm{VDC}$	5 V DC	2.1 A	10.5 W	1 module (18 mm)	200
PIN-12-24	pulse power supply	12\%20 V DC	24 V DC	8.3 A	200 W	$90 \times 134 \times 55 \mathrm{~mm}$	201
PIN-60-24	pulse power supply	$110 \div 240 \mathrm{~V} \mathrm{AC}$	24 V DC	2.5 A	60 W	$40 \times 160 \times 35 \mathrm{~mm}$	201
PIN-100-48	pulse power supply	110 -240 V AC	48 V DC	2.1 A	100 W	$46 \times 188 \times 36 \mathrm{~mm}$	201
PIN-300-48	pulse power supply	110 -240 V AC	48 V DC	6.3 A	300 W	$69 \times 223 \times 40 \mathrm{~mm}$	201
ZS-1	transformer power supply	195 2533 VAC	5 V DC	2 A	12 W	6 modules (105 mm)	197
ZS-2	transformer power supply	195 2533 V AC	12 V DC	1 A	12 W	6 modules (105 mm)	197
ZS-3	transformer power supply	195 2533 V AC	18 VDC	0.66 A	12 W	6 modules (105 mm)	197
ZS-4	transformer power supply	$195 \div 253 \mathrm{~V} \mathrm{AC}$	24 V DC	0.5 A	12 W	6 modules (105 mm)	197
ZS-5	transformer power supply	$195 \div 253 \mathrm{VAC}$	15 V DC	0.8 A	12 W	6 modules (105 mm)	197
ZS-6	transformer power supply	195 2533 V AC	48 V DC	0.25 A	12 W	6 modules (105 mm)	197
TR-08	mains transformer	230 V AC	8 V AC	1 A	8 VA	2 modules (35 mm)	202
TR-12	mains transformer	230 V AC	12 V AC	0.66 A	8 VA	3 modules (52.5 mm)	202
TR-24	mains transformer	230 V AC	24 VAC	0.5 A	12 VA	3 modules (52.5 mm)	202

ZS－1／ZS－2／ZS－3／ZS－4／ZS－5／ZS－6 12 W transformer power supplies

Type	Output voltage $[\mathrm{V}$ DC］	Current $[\mathrm{A}]$
ZS－1	5	2
ZS－2	12	1
ZS－3	18	0.66
ZS－4	24	0.5
ZS－5	15	0.8
ZS－6	48	0.25

input voltage	$195 \div 253 \mathrm{VAC}$
output power	12 W
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	6 modules $(105 \mathrm{~mm})$
weight	550 g
mounting	for TH－35 rail
ingress protection	IP20

ZI－15／ZI－16／ZI－17／ZI－20／ZI－21 12 w pulse power supplies

Type	Output voltage $[V ~ D C]$	Current $[A]$
$\mathrm{ZI}-15$	15	0.8
$\mathrm{ZI}-16$	13.5	0.9
$\mathrm{ZI}-17$	14.5	0.8
$\mathrm{ZI}-20$	12	1.0
$\mathrm{ZI}-21$	24	0.5

input voltage	$100 \div 264 \mathrm{VAC}$
output power	12 W
current limit	110% lout
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
weight	80 g
mounting	for TH－35 rail
ingress protection	IP20

ZI－22／ZI－24 30 W pulse power supplies

1000				input voltage	$100 \div 264 \mathrm{VAC}$
				output power	30 W
				current limit	
リニ゙ツ．．．．				ZI－22	110\％lout
				Z1－24	125\％lout
$\text { Un }_{0}^{0}$	Type	Output voltage ［V DC］	Current ［A］	working temperature	$-10 \div 40^{\circ} \mathrm{C}$
	ZI－22	［V DC］	［A］	terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals（cord） $4.0 \mathrm{~mm}^{2}$ screw terminals（wire）
	ZI－24	24	1.25	tightening torque	0.5 Nm
Uout				dimensions	3 modules（ 52.5 mm ）
				weight	190 g
［1－22				mounting	for TH－35 rail
1000				ingress protection	IP20

ZI－1／ZI－2／ZI－3／ZI－4／ZI－5／ZI－6 50 w pulse power supplies

Type	Output voltage $[$［V DC］	Current $[A]$
ZI－1	5	10
ZI－2	12	4
ZI－3	18	3
ZI－4	24	2
ZI－5	15	3.3
ZI－6	48	1

input voltage	$85 \div 264 \mathrm{VAC}$
output power	50 W
current limit	110% lout
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	6 modules $(105 \mathrm{~mm})$
weight	190 g
mounting	for TH－35 rail
ingress protection	IP20

input voltage	$180 \div 264$ VAC
output power	60 W
efficiency	87\%
starting current	$40 \mathrm{~A} / 20 \mathrm{~ms}$
leakage current	1 mA
accuracy of output voltage stabilization	1\%
voltage range (adjustable)	
Z1-61-12	10.8 $\div 13.8 \mathrm{~V}$
Z1-61-24	$21.6 \div 28.0 \mathrm{~V}$
pulsation and noises	
Z1-61-12	240 mV p-p
Z1-61-24	360 mVp -p
overload	$120 \div 180 \%$ lout/10s
overvoltage protection threshold	
Z1-61-12	$18 \div 23 \mathrm{~V}$
Z1-61-24	$36 \div 45 \mathrm{~V}$
power indication	green LED
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	4.5 modules (78 mm)
weight	270 g
mounting	for TH-35 rail
ingress protection	IP20

Protection

- Short circuit - in case of overload or short circuit, the output voltage is automatically disconnected. The power supply unit cyclically tries to switch on the power supply and when the cause of the tripping of the protection disappears, the rated power supply voltage is restored.
- Overvoltage - a disconnection of the output voltage. Return to normal operation after the power supply is switched off and back on.
- Thermal - a disconnection of the output voltage. When the temperature drops to a safe value, the output voltage will be restored.

Type	Output voltage [V DC]	Current [A]
ZI-61-12	12	5
ZI-61-24	24	2.5

$\mathbf{Z I}-100-12 / \mathbf{Z I}-100-24 \quad 100 \mathrm{w}$ pulse power supplies

input voltage	$180 \div 264$ V AC
output power	100 W
efficiency	88\%
starting current	$40 \mathrm{~A} / 20 \mathrm{~ms}$
leakage current	1 mA
accuracy of output voltage stabilization	1\%
voltage range (adjustable)	
ZI-100-12	10.8 13 , 8 V
ZI-100-24	$21.6 \div 28.0 \mathrm{~V}$
pulsation and noises	
ZI-100-12	240 mV p-p
ZI-100-24	360 mVp -p
overload	110 $\div 160 \%$ lout/10s
overvoltage protection threshold	
ZI-100-12	$18 \div 23 \mathrm{~V}$
ZI-100-24	$30 \div 40 \mathrm{~V}$
thermal protection threshold	$80 \div 85^{\circ} \mathrm{C}$
power indication	green LED
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	6 modules (100 mm)
weight	310 g
mounting	for TH-35 rail
ingress protection	IP20

Protection

- Short circuit - in case of overload or short circuit, the output voltage is automatically disconnected. The power supply unit cyclically tries to switch on the power supply and when the cause of the tripping of the protection disappears, the rated power supply voltage is restored.
- Overvoltage - a disconnection of the output voltage. Return to normal operation after the power supply is switched off and back on.
- Thermal - a disconnection of the output voltage. When the temperature drops to a safe value, the output voltage will be restored.

frequency	$50 \div 60 \mathrm{~Hz}$
output voltage	12 VDC
overload	$150 \% / 3 \mathrm{~min}$.
overvoltage IN-> OUT	3 kV
power indication	green LED
working temperature	$-10 \div 70^{\circ} \mathrm{C}$
cooling	gravitational
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
mounting	for TH-35 rail
ingress protection	IP2O

Type	Power [W]	Current [A]	Input voltage [V]	Dimensions $[\mathrm{mm}]$	Weight [g]
ZI-75-12	75	6.25	$100 \div 240 \mathrm{VAC}$	$130 \times 57 \times 115$	530
ZI-120-12	120	10.0	$100 \div 240 \mathrm{VAC}$	$130 \times 67 \times 115$	670
ZI-240-12	240	20.0	$180 \div 264 \mathrm{VAC}$	$130 \times 127 \times 115$	960

Protection

- Short circuit - in case of overload or short circuit, the output voltage is automatically disconnected. The power supply unit cyclically tries to switch on the power supply and when the cause of the tripping of the protection disappears, the rated power supply voltage is restored.
- Overvoltage - a disconnection of the output voltage. Return to normal operation after the power supply is switched off and back on.
- Thermal - a disconnection of the output voltage. When the temperature drops to a safe value, the output voltage will be restored.

ZI-60-24 / ZI-120-24 / ZI-240-24
 24 V industrial pulse power supplies

frequency	$50 \div 60 \mathrm{~Hz}$
output voltage	24 VDC
overload	$150 \% / 3 \mathrm{~min}$.
overvoltage IN->OUT	3 kV
power indication	green LED
working temperature	$-10 \div 70^{\circ} \mathrm{C}$
cooling	gravitational
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
mounting	for TH-35 rail
ingress protection	IP20

Type	Power $[W]$	Current $[A]$	Input voltage $[V]$	Dimensions $[\mathrm{mm}]$	Weight $[\mathrm{g}]$
ZI-60-24	60	2.5	$100 \div 240 \mathrm{VAC}$	$130 \times 57 \times 115$	530
ZI-120-24	120	5,0	$100 \div 240 \mathrm{VAC}$	$130 \times 67 \times 115$	670
ZI-240-24	240	10,0	$100 \div 240 \mathrm{VAC}$	$130 \times 127 \times 115$	960

[^14]| | | | | input voltage | $180 \div 264$ V AC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | output voltage | 12 VDC |
| | | | | efficiency | 82\% |
| | | | | starting current | 4A/20ms |
| | Type | | | leakage current | 1 mA |
| | | Power | Current | accuracy of output voltage stabilization | 3\% |
| | | | | overload | $140 \div 160 \% \%$ lout/ 10 s |
| | ZI-10-12P | 10 | 0.85 | thermal protection threshold | $70 \div 80^{\circ} \mathrm{C}$ |
| | ZI-20-12P | 20 | 1.7 | working temperature | $-20 \div 35^{\circ} \mathrm{C}$ |
| | | | | terminal | $2.5 \mathrm{~mm}^{2}$ screw terminals |
| | | | | tightening torque | 0.4 Nm |
| | | | | dimensions | $\emptyset 54(48 \times 43 \mathrm{~mm}), \mathrm{h}=25 \mathrm{~mm}$ |
| | | | | mounting | in flush-mounted box $\varnothing 60$ |
| | | | | ingress protection | IP20 |

Protection

- Overload - in case of overload or short circuit, the output voltage is automatically disconnected. The power supply unit cyclically tries to switch on the power supply and when the cause of the tripping of the protection disappears, the rated power supply voltage is restored.
- Thermal - a disconnection of the output voltage. When the temperature drops to a safe value, the output voltage will be restored.

ZI-11/ZI-12/ZI-13/ZI-14 pulse stabilizers

Type [V AC/V DC]	Output voltage [V DC]	Current [A]	
ZI-11	$8 \div 28 / 12 \div 37$	5	3
ZI-12	$12 \div 28 / 16 \div 37$	12	3
ZI-13	$18 \div 28 / 22 \div 37$	18	3
ZI-14	$24 \div 28 / 28 \div 37$	24	3

output current	3 A
current limit	Imax $=110 \%$ lout $/ 10 \mathrm{~s}$
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules $(52.5 \mathrm{~mm})$
weight	150 g
mounting	for TH-35 rail
ingress protection	IP2O

ZI-USB-5
 USB power supply

Purpose

The ZI-USB-5 is used to power electrical and electronic devices via the standard A-type USB output.

The inverter modifies the value of current and voltage in such a way as to best match the parameters to the device to be powered.

Type [W]	Output current [A]	Frequency $[\mathrm{Hz}]$	Input voltage [V]	Output voltage [V]	Dimensions [mm]	
PIN-12-24	200 W	8.3 A	$50 \div 60 \mathrm{~Hz}$	$12 \div 18 \mathrm{VDC}$	24 V DC	$100 \times 89 \times 54 \mathrm{~mm}$
PIN-60-24	60 W	2.5 A	$50 \div 60 \mathrm{~Hz}$	$110 \div 240 \mathrm{VAC}$	24 V DC	$40 \times 160 \times 35 \mathrm{~mm}$
PIN-100-48	100 W	2.1 A	$50 \div 60 \mathrm{~Hz}$	$110 \div 240 \mathrm{VAC}$	48 V DC	$46 \times 188 \times 36 \mathrm{~mm}$
PIN-300-48	300 W	6.3 A	$50 \div 60 \mathrm{~Hz}$	$110 \div 240 \mathrm{VAC}$	48 V DC	$69 \times 223 \times 40 \mathrm{~mm}$

PIN-12-24 24 V pulse power supply

The PIN-12-24 V power supply is a pulsed $12 \div 20 \mathrm{~V}$ DC input voltage converter to a stabilized 24 V DC output voltage.

input voltage	$12 \div 18 \mathrm{VDC}$
output voltage	24 VDC
power	200 W
frequency	$50 \div 60 \mathrm{~Hz}$
working temperature	$-10 \div 60^{\circ} \mathrm{C}$
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	Nm
dimensions	$100 \times 89 \times 54 \mathrm{~mm}$
ingress protection	$\mathrm{IP40}$

PIN-60-24 24 V pulse power supply

The PIN-60-24 V power supply is a pulse converter of $110 \div 240 \mathrm{~V}$ AC input voltage to a stabilized 24 V DC output voltage.

PIN-100-48
48 V pulse power supply
The PIN-100-48 V power supply is a pulsed $110 \div 240 \mathrm{VAC}$ input voltage converter to a stabilized 48 V DC output voltage.

input voltage	$110 \div 240 \mathrm{VAC}$
output voltage	48 VDC
power	100 W
frequency	$50 \div 60 \mathrm{~Hz}$
working temperature	$-10 \div 60^{\circ} \mathrm{C}$
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	1.2 Nm
dimensions	$46 \times 188 \times 36 \mathrm{~mm}$
ingress protection	IP20

PIN-300-48 48 V pulse power supply

The PIN-300-48 V power supply is a pulsed $110 \div 240 \mathrm{VAC}$ input voltage converter to a stabilized 48 V DC output voltage.

input voltage	$110 \div 240 \mathrm{VAC}$
output voltage	48 VDC
power	300 W
frequency	$50 \div 60 \mathrm{~Hz}$
working temperature	$-10 \div 60^{\circ} \mathrm{C}$
terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	1.2 Nm
dimensions	$69 \times 223 \times 40 \mathrm{~mm}$
ingress protection	$\mathrm{IP20}$

Purpose
The ECH-06 module along with an external gel battery with a nominal voltage of 12 V constitutes a backup power supply system for receivers with a supply voltage of $9 \div 30 \mathrm{~V}$ DC.

power supply/charging voltage	$18 \div 30 \mathrm{VDC}$
output voltage Uout	$\begin{array}{r} \text { Uin }-0.5 \mathrm{VDC} \\ \text { Uacu-0.5VDC } \end{array}$
current of the output load Uout	<3A
supported battery capacity	1.3 7.2 Ah
maximum battery voltage	13.8 VDC
charging current	$<0.35 \mathrm{~A}$
power supply cut-off threshold	$<10.5 \mathrm{~V}$ DC
own power consumption	<1W
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

PLD-01 350/PLD-01 750 DC power supply (Power LED Driver)

Purpose

The DC power supply is designed to supply LEDs with a forward current of 350 mA (PLD-01 350) or 750 mA (PLD-01 750).
The output voltage in this power supply is changed in such a way as to force the rated forward current of the LEDs and thus ensure their most efficient operation. The maximum power of the connected receivers depends on the value of the supply voltage and at Uin=40 V is 14 W (PLD- 01 350) or 30 W (PLD-01 750). The power supply can operate autonomously in the ON/OFF mode or in combination with the SCO-803 dimmer (p. 39) as a brightness controller.

TR-08/TR-12/TR-24 mains transformers

Purpose

Mains transformers are used to power electrical and electronic devices that require low, alternating voltage power supply.

The PTC (positive-temperature-coefficient) thermistor is included in the transformer circuit as an overcurrent protection.

Power indicators and multimeters

Product	Mounting	Type	Indication									Power supply	Modbus	Alarm relays	Page
			Voltage of phase	Voltage phase-to-phase	Current	Frequency	Power active	Power passive	Power apparent	$\begin{gathered} \text { Energy } \\ \text { exported } \end{gathered}$ to the mains	True RMS				
DMA-1	for TH-35 rail	ammeter 1-phase	-	-	-	-	-	-	-	-	-	100 $\div 300 \mathrm{~V} \mathrm{AC}$	-	-	206
DMA-1 TrueRMS	for TH-35 rail	ammeter 1-phase	-	-	-	-	-	-	-	-	-	$100 \div 300 \mathrm{~V} \mathrm{AC}$	-	-	206
DMA-3	for TH -35 rail	ammeter 3 -phase	-	-	-	-	-	-	-	-	-	$100 \div 300 \mathrm{~V} \mathrm{AC}$	-	-	206
DMA-3 TrueRMS	for TH -35 rail	ammeter 3 -phase	-	-	-	-	-	-	-	-	-	$100 \div 300 \mathrm{~V} \mathrm{AC}$	-	-	206
DMA-1T	panel-mounted	ammeter 1-phase	-	-	-	-	-	-	-	-	-	195 2625 V AC	-	-	207
DMA-3T	panel-mounted	ammeter 3-phase	-	-	-	-	-	-	-	-	-	195 2625 VAC	-	-	207
DMM-1T	panel-mounted	multimeter 1-phase	-	-	-	-	-	-	-	-	-	$195 \div 265 \mathrm{VAC}$	-	-	207
DMM-4T	panel-mounted	multimeter 3-phase	-	-	-	-	-	-	-	-	-	$195 \div 265 \mathrm{VAC}$	-	-	208
DMM-5T-2	panel-mounted	analyzer 3-phase	-	-	-	-	-	-	-	-	-	85 $2664 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	-	-	209
DMM-5T-3	panel-mounted	analyzer 3-phase	-	-	-	-	-	-	-	-	-	85 $2665 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	-	-	208
DMV-1	for TH-35 rail	voltmeter 1-phase	-	-	-	-	-	-	-	-	-	$100 \div 300 \mathrm{~V} \mathrm{AC}$	-	-	204
DMV-1 TrueRMS	for TH-35 rail	voltmeter 1-phase	-	-	-	-	-	-	-	-	-	100 $\div 300 \mathrm{~V} \mathrm{AC}$	-	-	204
DMV-3	for TH-35 rail	voltmeter 3 -phase	-	-	-	-	-	-	-	-	-	$100 \div 300 \mathrm{~V} \mathrm{AC}$	-	-	204
DMV-3 TrueRMS	for TH -35 rail	voltmeter 3 -phase	-	-	-	-	-	-	-	-	-	100 $\div 300 \mathrm{~V} \mathrm{AC}$	-	-	204
DMV-1T	panel-mounted	voltmeter 1 -phase	-	-	-	-	-	-	-	-	-	$195 \div 265 \mathrm{VAC}$	-	-	204
DMV-3T	panel-mounted	voltmeter 3 -phase	-	-	-	-	-	-	-	-	-	$195 \div 265 \mathrm{VAC}$	-	-	204
DMV-1AC-MBT	panel-mounted	$A C$ relay voltage	-	-	-	-	-	-	-	-	-	$80 \div 265 \mathrm{~V} \mathrm{AC}$	-	-	205
DMV-1DC-MBT	panel-mounted	DC relay voltage	$\bullet *$	-	-	-	-	-	-	-	-	$9 \div 30 \mathrm{VDC}$	-	-	205
WN-711	for TH -35 rail	voltage indicator 1-phase	-	-	-	-	-	-	-	-	-	$195 \div 265 \mathrm{~V} \mathrm{AC}$	-	-	211
WN-723	for TH -35 rail	voltage indicator 3-phase	-	-	-	-	-	-	-	-	-	$3 \times 230 \mathrm{~V} \mathrm{AC}$	-	-	211
WNC-1	for TH -35 rail	digital voltage indicator 1-phase	-	-	-	-	-	-	-	-	-	80 500 V AC	-	-	210
WNC-3	for TH-35 rail	digital voltage indicator 3 -phase	-	-	-	-	-	-	-	-	-	$80 \div 500 \mathrm{~V} \mathrm{AC}$	-	-	210

* Voltage measurement in the range of $0 \div 60 \mathrm{VDC}$

Digital

DMV-1 / DMV-1 True RMS
 DMV-3 / DMV-3 True RMS
 1-phase
 3-phase

power supply	$100 \div 300 \mathrm{VAC}$
supply frequency	$45 \div 55 \mathrm{~Hz}$
indication range	$100 \div 300 \mathrm{~V}$
indication accuracy	
DMV-1	1\%
DMV-3	1\%
DMV-1 True RMS	0.5\%
DMV-3 True RMS	0.5\%
display for one phase	$3 \times$ digital LED $10 \times 6 \mathrm{~mm}$
power consumption	4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- Measurement of phase voltages;
- The measuring circuit is also the power supply circuit of the device;
- Indicators with True RMS label, equipped with an RMS (Root Mean Square) transformer, indicate the correct voltage value for the distorted waveforms.

DMV-1/DMV-1 TrueRMS

DMV-3/DMV-3 TrueRMS

Digital (panel)

DMV-1T	1-phase
DMV-3T	3-phase

power supply	$195 \div 265$ V AC
indication range	
DMV-1T	$12 \div 600 \mathrm{~V}$
DMV-3T	$12 \div 400 \mathrm{~V}$
indication accuracy	1\%
display	
DMV-1T	3 -digit LED $14 \times 8 \mathrm{~mm}$
DMV-3T	$3 \times$ (3-digit LED $10 \times 6 \mathrm{~mm}$)
power consumption	3 VA
working temperature	$-5 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	
DMV-1T	$72 \times 72 \times 92 \mathrm{~mm}$
DMV-3T	$96 \times 96 \times 92 \mathrm{~mm}$
mounting hole	
DMV-1T	$66 \times 66 \mathrm{~mm}$
DMV-3T	$92 \times 92 \mathrm{~mm}$
ingress protection	IP20

DMV-1AC-MBT panel-mounted AC voltage relay

Purpose

DMV-1AC-MBT is a panel-mounted indicator of True RMS voltage value with the ability to set two independent alarms that control two relays. The measurement result is displayed on a 14 mm display. The device is equipped with a Modbus RTU bus which enables configuration and reading of measured parameters.

Functions

- 2 independent alarms controlling two outputs;
- Voltage measurement $0 \div 400 \mathrm{~V} \mathrm{AC}$;
- Galvanic separation between the power supply and measurement chain;
- Measurement of True RMS values.

power supply	$80 \div 265 \mathrm{VAC}$
contact	separated $2 \times$ NO/NC
maximum load current (AC-1)	$2 \times 6 \mathrm{~A}$
measurement input	separated 0$\div 400 \mathrm{~V} \mathrm{AC}$
measurement accuracy	1\%
alarm hysteresis	$1 \div 150 \mathrm{~V}$
lower alarm threshold	$10 \div 399 \mathrm{~V}$
upper alarm threshold	$11 \div 400 \mathrm{~V}$
alarm delay	$0 \div 180$ s
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1 or 2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	2 W
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ detachable terminals
tightening torque	0.4 Nm
dimensions	
housing	$72 \times 36 \times 72 \mathrm{~mm}$
mounting hole	$67.5 \times 32.5 \mathrm{~mm}$
display height	14 mm
mounting	panel
ingress protection	IP20

DMV-1DC-MBT panel-mounted $D C(0 \div 60 \mathrm{~V})$ voltage relay

Purpose

DMV-1DC-MBT is a panel-mounted indicator of True RMS voltage value with the ability to set two independent alarms that control two relays. The measurement result is displayed on a 14 mm display. The device is equipped with a Modbus RTU bus which enables configuration and reading of measured parameters.

Functions

- 2 independent alarms controlling two outputs;
- Voltage measurement $0 \div 60 \mathrm{~V}$ DC;
- Galvanic separation between the power supply and measurement chain.

Current intensity indicators

Purpose
The indicators are used for continuous reading of the current flowing in single-phase or three-phase network circuits.

Digital

DMA-1 / DMA-1 True rms
 1-phase
 DMA-3 / DMA-3 True RMS 3-phase

Functions

- Independent current measurement in each of the three phases;
- Indicators with True RMS label, equipped with an RMS (Root Mean Square) transformer, indicate the correct current value for the distorted waveforms.

power supply	$100 \div 300$ VAC
supply frequency	$45 \div 55 \mathrm{~Hz}$
current indication range	
direct measurement	$0 \div 20 \mathrm{~A}$
indirect measurement	$0 \div$ primary current of the transformer
maximum instantaneous overload	
direct measurement	40A/1s
indirect measurement	$10 \mathrm{~A} / 1 \mathrm{~s}$
indication accuracy	
DMA-1	1\%
DMA-3	1\%
DMA-1 True RMS	0.5\%
DMA-3 True RMS	0.5\%
display	
DMA-1	4-digit LED, digit $10 \times 14 \mathrm{~mm}$
DMA-3	3 -digit LED, digit $10 \times 6 \mathrm{~mm}$
power consumption	4 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

Purpose
The DMA indicators are designed to work with current transformers with the rated secondary current of 5 A . Current range of current transformers: $25 \div 1000 / 5 \mathrm{~A}$. The primary value of the transformer current determines the maximum measured current and the actual value of the current on the indicator.
DMA-1 20 A and DMA-3 20 A are designed for direct measurement (without the use of transformers) in the range of $0 \div 20 \mathrm{~A}$.

DMA-1

Method of marking when placing an order

Indirect measurement (with the use of transformers)

Value of the rated primary current of the transformer: $25,30,40,50,70,75,80,100,120,125,150,160,200$, $250,300,400,500,600,700,750,800,900,1000$.

Example:
DMA-1 50/5 A - single-phase indicator for work with 50/5 A transformer, measured range $0 \div 50 \mathrm{~A}$, without True RMS
DMA-3 150/5 A True RMS - 3-phase indicator for work with $3 \times 150 / 5$ A transformers, measured range $3 \times 0 \div 150$ A, with True RMS.

DMA-3

Direct measurement (without the use of transformers)

Example:

DMA-1 20 A - single-phase for 20 A , measured range $0 \div 20 \mathrm{~A}$, without True RMS.
DMA-3 20 A True RMS - 3 -phase for 20 A , measured range $3 \times(0 \div 20 \mathrm{~A})$, with True RMS.

Digital (panel)

DMA-1T
 DMA-3T

Functions

- Direct measurement in the range of $0 \div 5 \mathrm{~A}$;
- Indirect measurement with the use of current transformers;
- Scaling the indicator to the appropriate values of the transformer by means of three buttons on the front of the indicator;
- Indirect measurement with the use of current transformers in standard current versions in the range $1 \div 9000 / 5 \mathrm{~A}$.

power supply	$195 \div 265 \mathrm{VAC}$
current indication range	
direct measurement	$0 \div 5 \mathrm{~A}$
indirect measurement	$0 \div$ primary current of the transformer
indication accuracy	1\%
display	
DMA-1T	4-digit LED $14 \times 8 \mathrm{~mm}$
DMA-3T	$3 \times(4$-digit LED $10 \times 6 \mathrm{~mm}$)
power consumption	3 VA
working temperature	$-5 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	
DMA-1T	$72 \times 72 \times 92 \mathrm{~mm}$
DMA-3T	$96 \times 96 \times 92 \mathrm{~mm}$
mounting hole	
DMA-1T	$66 \times 66 \mathrm{~mm}$
DMA-3T	$92 \times 92 \mathrm{~mm}$
ingress protection	IP20

DMA-1T

DMA-3T

DMA-3T

Multifunctional digital indicators for network parameters

DMM-1T

1-phase

Functions

- Direct measurement in the range of $0 \div 5 \mathrm{~A}$;
- Indirect measurement with the use of current transformers in standard current versions in the range $1 \div 9000 / 5$ A;
- Measurement of phase voltage;
- Scaling the indicator to the appropriate values of the transformer by means of three buttons on the front of the indicator;
- Measurement of phase frequency.

3-phase

power supply	195 2625 V AC
current indication range	
direct measurement	0 $\div 5 \mathrm{~A}$
indirect measurement	$0 \div$ primary current of the transformer
current ratio	1 $\div 9000 / 5 \mathrm{~A}$
range of voltage indications	$12 \div 400 \mathrm{VAC}$
range of frequency indications	$10 \div 100 \mathrm{~Hz}$
indication accuracy	$1 \% \pm 1$ digit
display	4 -digit LED $5 \times 9 \mathrm{~mm}$
power consumption	3W
working temperature	$-5 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$96 \times 96 \times 92 \mathrm{~mm}$
mounting hole	$92 \times 92 \mathrm{~mm}$
ingress protection	IP20

Functions

- Independent current measurement in each of the three phases;
- Direct measurement in the range of $0 \div 5 \mathrm{~A}$;
- Indirect measurement with the use of current transformers in standard current versions in the range 1 $\div 9000 / 5 \mathrm{~A}$;
- Scaling the indicator to the appropriate values of the transformer by means of three buttons on the front of the indicator;

Measurement of phase voltages and phase-to-phase voltages

- Measurement of phase frequencies;
- Selection of the indicated voltage and frequency values of one of the phases by pressing the button on the front of the indicator.

network 3-p	3-phase, 4-wire
power supply 85	$85 \div 265 \mathrm{VAC} / \mathrm{DC}$
voltage measurement	
rated voltage	230 VAC
indirect voltage measurement	$1 \mathrm{~V} \div 600 \mathrm{kV}$
accuracy	± 0.2 \%
frequency	$50 \div 60 \mathrm{~Hz}$
accuracy of measurement of power and active energy	ergy ± 0.5 \%
accuracy of measurement of power and reactive energ	energy $\pm 1 \%$
measured voltage harmonics	$3 \div 55$
measured current harmonics	3 $\div 55$
accuracy of measurement of voltage harmonics	2\%
accuracy of measurement of current harmonics	2\%
current measurement	
rated current In	5 A
indirect current measurement 1	$1 \mathrm{~mA} \div 25000 \mathrm{~A}$
accuracy	± 0.2 \%
relay outputs	
outputs quantity	2
function pros	programmable
maximum load current (AC-1)	$2 \mathrm{~A} / 250 \mathrm{~V}$ AC
interface	RS-485
communictaion protocole	Modbus RTU
baud rate 1200	$1200 \div 115200$ bps
display	LCD
dimensions 71	$71.5 \times 61.5 \mathrm{~mm}$
display backlight	YES
battery backup of the clock ap	approx. 5 years
power consumption	$\leq 10 \mathrm{VA}$
working temperature	$-20 \div 55^{\circ} \mathrm{C}$
connectors plug-in	g-in (socket+plug)
mounting wires	$\leq 1.5 \mathrm{~mm}^{2}$
tightening torque	$\leq 0.4 \mathrm{Nm}$
dimensions 98	$98 \times 98 \times 58 \mathrm{~mm}$
mounting hole	$91 \times 91 \mathrm{~mm}$
ingress protection	
front	IP54
back	IP20

Functions

- Indicator designed for measurement in semi-indirect or indirect system in 3-phase, 4-wire networks (3P4W).
- Measured parameters:
- phase voltages and currents;
- phase-to-phase voltage;
- frequency;
- reactive, active and apparent (total and per phase) power;
- active energy (imported and exported), reactive energy (capacitive and inductive) and apparent energy (total and per phase);
- power factor (total and for each phase);
- measurement of total harmonic distortion of voltage and current (up to 55 harmonic);
- display of minimum, maximum and average values for the measured parameters;
- Event log:
- too high voltage;
- too low voltage;
- too high current flow;
- no power;
- exceeded voltage and current asymmetry;
- exceeded limit of total harmonic distortion of voltage and current.
- 2 programmable relay outputs that indicates:
- exceeding of preset voltage or current parameters;
- exceeding of voltage and current asymmetry;
- exceeding of acceptable of total harmonic distortion of voltage and current;
- Built-in clock with battery backup;
- Protection of meter settings by PIN code.
- Communication via RS-485 interface with Modbus RTU protocol

Selected functions

- Measured parameters:
- phase voltages and currents;
- interfacial tensions;
- frequency;
- phase sequence;
- active power;
- reactive power;
- apparent power;
- power and electricity demand;
- power factor;
- full, four-quadrant energy measurement (both consumed, and returned to the network);
- analysis of voltage and current harmonics distribution up to and including the 63rd harmonic.

Wiring diagrams

1-phase, 2-wire network (1P2W)

according	MID Directive 2014/32/EU
measuring system	
network	1P2W - 1-phase, 2-wire 3P3W - 3-phase, 3-wire 3P4W - 3 -phase, 4-wire
current measurement	
rated current in	$0.25 \div 5$ (6) A*
power consumption	$0.5 \mathrm{VA} /$ phase
voltage mesurement	
measurement range	$58 \div 276 \mathrm{~V} \mathrm{AC}$ (phase voltage L-N) $100 \div 480 \mathrm{~V} \mathrm{AC}$ (interphase voltage L-L)
frequency	$45 \div 55 \mathrm{~Hz}$
working conditions	
total power consumption	
typical	$\leq 2 \mathrm{VA}$
temporary	≤ 15 VA
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
storage temperature	$-40 \div 70^{\circ} \mathrm{C}$
relative humidity	(without condensation of steam and aggressive gases)
communication protocole	
pulse outputs	2
interface	RS-485
protocol	Modbus RTU
parity	NONE/EVEN/ODD
baud rate	2400/4800/9600/19200/38400 bps
display	monochrome LCD
dimensions	$96 \times 96 \times 62 \mathrm{~mm}$
mounting hole	$92 \times 92 \mathrm{~mm}$
ingress protection	
front	IP54
back	IP20
* actual value of the measured current will depend on the size of the current transformers used	

- Configuration of the measured network:
- 3-phase, 4-wire;
-3-phase, 3-wire;
- 1-phase, 2-wire.
- Measuring system:
- directly (up to 5 A);
- semi-indirect with the use of current transformers;
- indirect with the use of voltage and current transformers;
- Communication:
- RS-485 interface and support for Modbus RTU protocol.
-2 pulse outputs;
- LCD display:
- illuminated multifunction LCD display;
- power factor indicator;
- bargraph for clear visualization of the load level.

3-phase, 4-network (3P4W)

Digital power supply indicators

WNC-1 1-phase

Purpose

Indicator is designed to measure and indicate the value of 1-phase alternating voltage in the range of $80 \div 500 \mathrm{~V}$ AC.

WNC-3

Purpose

Indicator is designed to measure and indicate the value of 3 -phase alternating voltage in the range of $80 \div 500 \mathrm{~V} \mathrm{AC}$.

power supply	$80 \div 500 \mathrm{VAC}$
frequency	$50 \div 60 \mathrm{~Hz}$
voltage indicator	$3 \times$ (3-digit, 7 -segment LED)
digit height	7 mm
measurement resolution	1 V
measurement accuracy	$1 \%(\pm 1$ digit)
power consumption	$<5 \mathrm{VA},<1 \mathrm{~W}$
working temperature	$-5 \div 40^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Analog power supply indicators

WN-711
 1-phase, bar

Purpose

Voltage indicators WN-711 are designed for continuous reading of voltage values in a 1-phase network.

power supply	$195 \div 265 \mathrm{VAC}$
voltage indicator	$11 \times$ LED
indication range	$205 \div 245 \mathrm{~V}$
scale	5 V
reading accuracy	2.5 V
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

WN-723

3-phase, bar

Purpose

Voltage indicators WN-723 are designed for continuous reading of voltage values in a 3-phase network.

power supply	$3 \times 230 \mathrm{~V}+\mathrm{N}$
voltage indicator	$3 \times(11 \times \mathrm{LED})$
indication range	$205 \div 245 \mathrm{~V}$
scale	5 V
reading accuracy	2.5 V
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	2 modules $(35 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Signal lights

LK-BZ-3G/LK-BZ-3K

for the optical indication of voltage in individual phases of a 3-phase network

Purpose

The LK-BZ-3 control light is designed for the optical indication of voltage in individual phases of a three-phase network. The control lights are protected by fuses connected in series, which allows to avoid the use of an additional module with protections and, as a result, saves space in the switchgear. The other end of the fuse is led out to the connector of the device housing, which makes it possible to use it also to protect other parts of the circuit.

power supply	$3 \times 230 \mathrm{~V}+\mathrm{N}$
rated current (the signal light is on)	$1.7 \mathrm{~mA} /$ phase
power consumption (the signal light is on)	$0.2 \mathrm{~W} /$ phase
indication of voltage	$3 \times \mathrm{LED} \varnothing 3 \mathrm{~mm}$
fuse	fuse link $\varnothing 5 \mathrm{~mm} \times 20 \mathrm{~mm}$
maximum disconnection voltage	250 V AC
maximum fuse current	6.3 A
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Type	LED color
LK-BZ-3 G	$3 \times$ green
LK-BZ-3 K	red-yellow-green

Purpose

The LK-712 control lamp is designed for the optical indication of the presence of voltage in an electrical circuit.

power supply (implementation only in one range)) $5 \div 10 \mathrm{VAC} / \mathrm{DC}$
	$10 \div 30 \mathrm{VAC} / \mathrm{DC}$
	$30 \div 130 \mathrm{VAC} / \mathrm{DC}$
	$130 \div 260 \mathrm{VAC} / \mathrm{DC}$
power indication	$1 \times$ LED $\varnothing 5$
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Type	LED color
LK-712 G	$1 \times$ green
LK-712 Y	$1 \times$ yellow
LK-712 R	$1 \times$ red
LK-712 B	$1 \times$ blue

Example of marking when placing an order: LK-712 \quad B $\quad 30 \div 130 \mathrm{~V}_{\boxed{\prime}}$ —supply voltage color

LK-713

Purpose

It is designed for the optical indication of the presence of voltage in individual phases of a 3-phase network.
The presence of voltage in the phase is indicated by the corresponding green LED incorporated in the circuit of this phase.

power supply	$3 \times 230 \mathrm{~V}+\mathrm{N}$
rated current	1.7 mA
voltage indication	$3 \times \mathrm{LED} \varnothing 5$
power consumption	1.1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for $\mathrm{TH}-35 \mathrm{rail}$
ingress protection	IP 20

Type	LED color
LK-713 G	$3 \times$ green
LK-713 Y	$3 \times$ yellow
LK-713 R	$3 \times$ red
LK-713 K	red-yellow-green

Example of marking when placing an order: LK-713 K \quad - color

LK-714

Purpose

It is designed for the optical indication of the operating statuses of the receiver, such as on/pause, open/closed, etc.
It has 2 separate signalling circuits: green LED and red LED.

power supply (implementation only in one range)	$5 \div 10 \mathrm{VAC} / \mathrm{DC}$
	$10 \div 30 \mathrm{VAC} / \mathrm{DC}$
	$30 \div 130 \mathrm{VAC} / \mathrm{DC}$
	$130 \div 260 \mathrm{VAC} / \mathrm{DC}$
state indication	$1 \times$ green LED $\varnothing 5$
	$1 \times$ red LED $\varnothing 5$
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$0.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Example of marking when placing an order:
LK-714
$130 \div 260$ V _ supply voltage

Photovoltaic inverters

Purpose

FPV3 three-phase photovoltaic inverters suitable for on-grid operation use modern transformerless technology for power generation and conversion. Two independent solar panel line inputs equipped with MPPT power point tracking systems allow you to flexibly adapt them to the shape and orientation of the panels.

FPV3 series

Functions

- Transformerless topology;
- Efficiency up to 98,2\%;
- $2 \times$ MPPT inputs with a wide input voltage range;
- Silicon Carbide Components (SCC [EN]/SIC [PL]) for maximum resistance of power components;
- Zero leakage current.

Application

- Three-phase photovoltaic installations from 4 to 10 kW;
- For indoor and outdoor mounting (IP65);
- Easy to install and maintain;
- Several inverters can be connected in parallel.

Certificates

FPV3 inverters comply with the requirements of EN 50549-1:2019 and the network code described in Commission Regulation (EU) 2016/631 (NC RfG).

Reliability

- Multiple safety features;
- 10 year warranty;
- The highest quality of components used to minimize the risk of damage.

Communication

- Wi-Fi communication module as standard;
- Easy to use, free mobile app for Android and iOS phones and tablets;
- Integration with home automation software - Fox;
- Data registration on servers located in Poland;
- Ability to integrate with external IoT systems using REST APIs.

Model	FPV3-4K	FPV3-6K	FPV3-8K	FPV3-10K
Input (DC)				
Maximum DC power	5500 W	7500 W	9500 W	11500 W
Maximum DC voltage	1000 V DC			
Minimum operating voltage	250 V DC			
MPPT operating voltage range	$250 \div 850 \mathrm{VDC}$			
Maximum single output current	$17 \mathrm{~A}(17 \mathrm{~A} \times 2)$			
Number of MPPT controllers	2			
Number of DC inputs	2 (1 input per MPPT channel)			
Output (AC)				
Nominal AC power	4000 W	6000 W	8000 W	10000 W
Maximum apparent power	5000 VA	7000 VA	8800 VA	11000 VA
Maximum output current	8 A	12 A	15 A	17 A
Rated output voltage	$400 \mathrm{~V} \mathrm{AC} \mathrm{/} 50 \mathrm{~Hz}$			
Range of output voltages	$280 \div 490 \mathrm{~V} \mathrm{AC} \mathrm{/} 45 \div 55 \mathrm{~Hz}$			
Power factor	0.8 (capacitive) $\div 0.8$ (inductive)			
Harmonic	$<1,5 \%$			
Type of network	$3 L+N+P E$			
Network connection required	yes (on-grid)			
Efficiency				
Maximum	98.2\%	98.2\%	98.2\%	98.2\%
European weighted efficiency	97.7\%	97.7\%	97.7\%	97.7\%
MPPT	99.9\%	99.9\%	99.9\%	99.9\%
Protection				
Reverse DC polarity	yes			
DC disconnector	yes			
DC/AC overvoltage protection	yes			
Protection against leakage current	yes			
DC insulation measurement	yes			
Differential current measurement	yes			
Other				
Inverter topology	transformerless			
Power consumption in night mode	<1 W			
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$480 \times 400 \times 180 \mathrm{~mm}$			
Weight	22 kg			
Operating temperature range	$-25 \div 60^{\circ} \mathrm{C}$			
Humidity range	$0 \div 95 \%$ (without condensation)			
Ingress protection	IP65			
Cooling	natural convection			
Display	LCD			
Communication				
RS-485	option			
Wi-Fi	yes			
Warranty				
10 years	yes			

Inverters and soft starters

Purpose

The inverters belong to the group of electronic frequency converters and are designed for smooth control of the rotational speed of the asynchronous three-phase motors.

FA-1LS / FA-3HS

The most important functions

- Miniature size, weight and DIN rail mounting capability;
- Sensorless motor vector control and control based on freely programmable V/F characteristic;
- Overload capacity up to 150% for a period of one minute;
- PLC mode with up to 16 programmable steps (speed, acceleration and deceleration time, duration) executed once or cyclically by the inverter;
- The built-in RS-485 communication module with support for the Modbus RTU protocol allows you to connect the inverter to the industrial network and to control, monitor and configure the operation of the inverter remotely;
- Built-in PID controller;
- High programming freedom for inverter inputs and outputs;
- Possibility of limiting access to settings and securing with a PIN number.

Types of devices

Type of inverter	Voltage input [V]	Current input [A]	Voltage output [V]	Current output [A]	Maximum motor power [kW]	Width (W) [mm]	Length (L) [mm]	Height (H) [mm]
FA-1LS-004	1×230	5.4	3×230	2.5	0.4	72	138	123.5
FA-1LS-007	1×230	8.2	3×230	4.0	0.7			
FA-1LS-015	1×230	14.0	3×230	7.0	1.5			
FA-1LS-022	1×230	23.0	3×230	10.0	2.2		185	134
FA-3HS-007	3×400	4.3	3×400	2.5	0.7		138	123.5
FA-3HS-015	3×400	5.0	3×400	3.8	1.5			
FA-3HS-022	3×400	5.8	3×400	5.1	2.2			
FA-3HS-040	3×400	10.5	3×400	9.0	4.0		185	134
FA-3HS-055	3×400	14.6	3×400	13.0	5.5			

The dimensions of the inverter and the location of the measuring holes

	Functions	Technical data
Power supply	FA-1LS	1-phase
	Voltage and frequency	$1 \times 220 \div 240 \mathrm{~V}$,
	Output voltage	$3 \times 220 \div 240 \mathrm{~V}$ (for 230 V power supply)
	FA-3HS	3 -phase
	Voltage and frequency	$3 \times 380 \div 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
	Output voltage	$3 \times 380 \div 400 \mathrm{~V}$ (for 400 V power supply)
	Output frequency	$0,00 \div 3200 \mathrm{~Hz}$ (U/F control) $0,00 \div 300,0 \mathrm{~Hz}$ (vector control)
	V/F control characteristics	1) Constant torque characteristics 2) Characteristics with reduced torque 3) Torque characteristics set by the user 4) Vector control (sensor and sensorless)
	Initial torque	150.0\% for 0.50 Hz
	Dynamics of speed control	1:100 (in vector control mode)
	Output speed stability	$\pm 0.5 \%$ (in vector control mode)
	Driving torque boost	In V/F control mode, automatic or user-defined
	Accelerating/braking	Linear or programmable S-curve characteristics. Maximum acceleration and braking time - 6500 s .
	Frequency setting accuracy	Digital accuracy setting: $0.01 \mathrm{~Hz}(f \leq 100 \mathrm{~Hz}), 0.1 \mathrm{~Hz}(>100 \mathrm{~Hz})$; Analog accuracy setting: 1% of maximum frequency
	Overload	1) 150% of the rated current for 1 minute 2) 180% of the rated current for 2 seconds
	Motor slip compensation	In V/F control mode, the automatic slip compensation is available
Protection	Inverter protection	1) Against too high and too low power supply voltage 2) Against exceeding the maximum current 3) Against too high load 4) Against the loss of speed loss and stall of a motor 5) Against the current leakage to mass 6) Against overheating of the inverter 7) In addition, the inverter is protected against communication errors or incorrect feedback signals
	Safety switch	The input or a button can be programmed as a safety switch to immediately remove the voltage from the inverter outputs.
	Settings protection	Settings of the inverter can be protected with a PIN number
	Error reset	Both automatic and manual error reset can be set
Braking	DC injection braking and braking using the external braking resistor	
1/0	5 digital inputs	1) Triggering inputs both with low (COM) and high (+24 V) level. 2) Freely programmed functions, such as forward and reverse run, forward and reverse test run, reset, multi-stage speed control, motor potentiometer, acceleration and braking time change, pulse input, and others.
	1 analog input	1) They can operate as both voltage outputs $(0 \div 10 \mathrm{~V})$ and current outputs $(0 \div 20 \mathrm{~mA})$. The range of $4 \div 20 \mathrm{~mA}$ can also be set. 2) The analog inputs can be used, among other things, for setting the frequency and torque and for cooperation with the PID controller.
	1 analog output	1) They can operate as both voltage outputs $(0 \div 10 \mathrm{~V})$ and current outputs $(0 \div 20 \mathrm{~mA})$. 2) The analog outputs can be programmed for signaling of the following values: a) preset and present frequency; b) rotation speed; c) output current voltage; d) voltage in the DC circuit; e) setpoint monitoring; f) power and output torque; g) motor rotation speed; h) driving torque.

	Functions	Technical data
1/0	1 relay output	1) Contact load capacity $5 \mathrm{~A} / 250 \mathrm{~V}$ AC or $5 \mathrm{~A} / 30 \mathrm{~V} D C$ 2) Highly programmable output functions (the indication of 40 different states of the inverter): a) work; b) ready to work; c) failure; d) overload; e) reaching the set frequency.
Adjustment of the speed	1) Wide range of speed setting options, including various combinations including digital inputs, analog inputs, remot control via RS-485 and control panel buttons. 2) Multistage speed - 16 different speeds and 8 acceleration/braking times can be entered. 3) PLC mode - up to 8 steps can be programmed that are executed once or cyclically by the inverter. For each step, you can specify the speed of the motor, acceleration/braking time and duration. You can also specify whether the sequence will be executed only once or repeated in a loop.	
PID	The built-in PID controller enhances the ability to adjust the drive operation to the requirements of the technological process. Both the setpoint and the feedback signal can be entered from one of the following sources: 1) Control panel; 2) Analog inputs; 3) Digital inputs; 4) Pulse input.	
Environmental conditions	Working temperature	$-10^{\circ} \mathrm{C} \div 40^{\circ} \mathrm{C}$. If the temperature exceeds $40^{\circ} \mathrm{C}$, the maximum output current is reduced by 1% with each additional ${ }^{\circ} \mathrm{C}$
	Storage	$-20 \div 65^{\circ} \mathrm{C}$
	Humidity	Below 90\%, no moisture condensation
	Height	$0 \div 1000 \mathrm{~m}$
	Installation	Vertical installation inside a control cabinet with good ventilation on a mounting plate made of non-combustible material. The installation method must also ensure that the inverter is protected against direct sunlight, dust, moisture, and aggressive or explosive gases.
	Ventilation	Cooling by natural and forced air circulation

FA-1LX/FA-3HX

The most important functions

- The inverter design is based on a powerful 32-bit DSP processor thus providing a fast and efficient implementation of advanced asynchronous three-phase motor control algorithms.
- It can operate in speed control mode or torque control mode.
- Control of the motor is based on vector control (both sensorless and with speed feedback loop) and on a control with freely programmable V/F characteristics.
- Automatic slip compensation function and high initial torque (up to 180% at the frequency of 0.25 Hz).
- Multifunctional control panel connected to the inverter on a hot-plug basis with the ability to store up to four sets of parameter settings at the same time and easily transferring settings from one inverter to another.
- PLC mode - up to 7 steps can be programmed that are executed once or cyclically by the inverter. For each step, you can specify the speed, acceleration time and duration.
- Great freedom in programming the inputs and outputs of the inverter, both analog and digital.
- The built-in RS-485 communication module (with support for the Modbus RTU protocol) allows you to connect the inverter to the industrial network and to control, monitor and configure the
 operation of the inverter remotely.

Types of devices

Type of inverter	Voltage input [V]	Current input [A]	Voltage output [V]	Current output [A]	Maximum motor power [kW]	Width (W) [mm]	Length (L) [mm]	Height (H) [mm]
FA-1LX007	1×230	8.2	3×230	4	0.75	120	185	165
FA-1LX015	1×230	14.0	3×230	7	1.5	120	185	165
FA-1LX022	1×230	23.0	3×230	10	2.2	150	220	182
FA-1LX040	1×230	35.0	3×230	16	4.0	180	285	200
FA-3HX007	3×400	4.3	3×400	2.5	0.75	120	185	165
FA-3HX015	3×400	5.0	3×400	3.8	1.45	120	185	165
FA-3HX022	3×400	5.8	3×400	5.1	2.2	120	185	165
FA-3HX040	3×400	10.5	3×400	9.0	4.0	150	220	182
FA-3HX055	3×400	14.6	3×400	13	5.5	150	220	185
FA-3HX075	3×400	20.5	3×400	17	7.5	180	285	200

Description of inputs and outputs

	Functions	Technical data
Power supply	FA-1LX	1-phase
	Voltage and frequency	$1 \times 230 \mathrm{~V}(\pm 10 \%), 50 / 60 \mathrm{~Hz}(\pm 5 \%)$
	Output voltage	$3 \times 230 \mathrm{~V}$ (for 230 V power supply)
	FA-3LX	3-phase
	Voltage and frequency	$3 \times 400 \mathrm{~V}(\pm 10 \%), 50 / 60 \mathrm{~Hz}(\pm 5 \%)$
	Output voltage	$3 \times 400 \mathrm{~V}$ (for 400 V power supply)
	Output frequency	$0.00 \div 3200 \mathrm{~Hz}$ (U/F control) $0.00 \div 300.0 \mathrm{~Hz}$ (vector control)
	V/F control characteristics	1) Constant torque characteristics 2) Characteristics with reduced torque 3) Torque characteristics set by the user 4) Vector control (sensor and sensorless)
	Initial torque	18.0\% for 0.50 Hz
	Dynamics of speed control	1:100
	Output speed stability	$\pm 0.5 \%$
	Driving torque boost	In V/F control mode, automatic or user-defined
	Accelerating/braking	Linear or programmable S-curve characteristics. Maximum acceleration and braking time - 6500 s .
	Frequency setting accuracy	Digital accuracy setting: 0.01 Hz ($f \leq 100 \mathrm{~Hz}$), 0.1 Hz ($>100 \mathrm{~Hz}$); Analog accuracy setting: 1% of maximum frequency
	Overload	1) 150% of the rated current for 1 minute 2) 200% of the rated current for 0.1 second
	Motor slip compensation	In V/F control mode, the automatic slip compensation is available
Protection	Inverter protection	1) Against too high and too low power supply voltage 2) Against exceeding the maximum current 3) Against too high load 4) Against the loss of speed loss and stall of a motor 5) Against the current leakage to mass 6) Against overheating of the inverter 7) In addition, the inverter is protected against communication errors or incorrect feedback signals
	Safety switch	The input or a button can be programmed as a safety switch to immediately remove the voltage from the inverter outputs.
	Settings protection	Settings of the inverter can be protected with a PIN number
	Error reset	Both automatic and manual error reset can be set
Braking	DC injection braking and braking using the external braking resistor	
1/0	6 digital inputs	1) Triggering inputs both with low (COM) and high (+24 V) level. 2) Freely programmed functions, such as forward and reverse run, forward and reverse test run, reset, multi-stage speed control, motor potentiometer, acceleration and braking time change, pulse input, and others.
	2 analog inputs	1) They can operate as both voltage outputs ($0 \div 10 \mathrm{~V}$) and current outputs ($0 \div 20 \mathrm{~mA}$). The range of $4 \div 20 \mathrm{~mA}$ can also be set. 2) The analog inputs can be used, among other things, for setting the frequency and torque and for cooperation with the PID controller.
	2 analog outputs	1) They can operate as both voltage outputs $(0 \div 10 \mathrm{~V})$ and current outputs $(0 \div 20 \mathrm{~mA})$. 2) The analog outputs can be programmed for signaling of the following values: a) preset frequency; b) output current voltage; c) voltage in the DC circuit; d) temperature of the IGBT power output stage; e) output power; f) motor speed; g) driving torque.

	Functions	Technical data
1/0	2 transistor outputs	1) High-speed pulse outputs (max. frequency 100 kHz). Available indication: a) preset frequency; b) current frequency; c) value of the current; d) output voltage; e) voltage in the DC circuit; f) temperature of the power output stage; g) output power; h) motor speed; i) output torque; 2) Transistor load - max. $20 \mathrm{~mA} / 27 \mathrm{~V}$
	1 relay output	1) Contact load capacity $5 \mathrm{~A} / 250 \mathrm{~V}$ AC or $5 \mathrm{~A} / 30 \mathrm{~V} D C$ 2) Highly programmable output functions (the indication of 34 different states of the inverter)
Adjustment of the speed	1) Wide range of speed setting options, including various combinations including digital inputs, analog inputs, potentiometer and control panel buttons, pulse inputs and motor potentiometer. 2) Multistage speed - 16 different speeds and 8 acceleration/braking times can be entered. 3) PLC mode - up to 8 steps can be programmed that are executed once or cyclically by the inverter. For each step, you can specify the speed of the motor, acceleration/braking time and duration. You can also specify whether the sequence will be executed only once or repeated in a loop.	
PID	The built-in PID contro process. Both the setp 1) Control panel (butt 2) Analog inputs; 3) Digital inputs; 4) Pulse input.	s the ability to adjust the drive operation to the requirements of the technological feedback signal can be entered from one of the following sources: iometer);
Environmental conditions	Working temperature	$-10^{\circ} \mathrm{C} \div 40^{\circ} \mathrm{C}$. If the temperature exceeds $40^{\circ} \mathrm{C}$, the maximum output current is reduced by 1% with each additional ${ }^{\circ} \mathrm{C}$
	Storage	$-20 \div 65^{\circ} \mathrm{C}$
	Humidity	Below 90\%, no moisture condensation
	Height	$0 \div 1000 \mathrm{~m}$
	Installation	Vertical installation inside a control cabinet with good ventilation on a mounting plate made of non-combustible material. The installation method must also ensure that the inverter is protected against direct sunlight, dust, moisture, and aggressive or explosive gases.
	Ventilation	Cooling by natural and forced air circulation

FA-3X

The most important functions

- The inverter design is based on a powerful 32-bit DSP processor thus providing a fast and efficient implementation of advanced asynchronous three-phase motor control algorithms;
- It can operate in speed control mode or torque control;
- Motor control based on a sensorless vector control and freely programmable V/F characteristics;
- Automatic slip compensation function and high initial torque (up to 180% at the frequency of 0.5 Hz).
- PLC mode - up to 16 steps can be programmed that are executed once or cyclically by the inverter. For each step, you can specify the speed, acceleration time and duration.
- Great freedom in programming the inputs and outputs of the inverter, both analog and digital.

Types of devices

Type of inverter	Voltage input [V]	Current input [A]	Voltage output [V]	Current output [A]	Maximum motor power [kW]	Width (W) [mm]	Height (L) [mm]	Depth (H) [mm]
FA-3X110	3×400	26	3×400	25	11	220	360	210
FA-3X150	3×400	35	3×400	32	15	220	360	210
FA-3X220	3×400	47	3×400	45	22	225	435	242

Control panel

The control panel can be detached from the main body of the inverter. This allows for external mounting on the switchgear door for quick access to the settings and control of the inverter parameters.

	Functions	Technical data
Power supply	Voltage and frequency	$3 \times 380 \div 415 \mathrm{~V}(\pm 10 \%), 50 / 60 \mathrm{~Hz}(\pm 5 \%)$
	Output voltage	$3 \times 380 \div 400 \mathrm{~V}$ (for 400 V power supply)
	Output frequency	$0.00 \div 3200 \mathrm{~Hz}$ (U/F control) $0.00 \div 300 \mathrm{~Hz}$ (vector control)
	V/F control characteristics	1) Constant torque characteristics 2) Characteristics with reduced torque 3) Torque characteristics set by the user 4) Vector control (sensor and sensorless)
	Initial torque	180\% for 0.50 Hz
	Dynamics of speed control	1:100
	Output speed stability	$\pm 0.5 \%$
	Driving torque boost	In V/F control mode, automatic or user-defined
	Accelerating/braking	Linear or programmable S-curve characteristics. Maximum acceleration and braking time: 6500 s .
	Frequency setting accuracy	Digital accuracy setting: 0.01 Hz ($f \leq 100 \mathrm{~Hz}$), $0.1 \mathrm{~Hz}(>100 \mathrm{~Hz}$); Analog accuracy setting: 1% of maximum frequency
	Overload	1) 150% of the rated current for 1 minute 2) 200% of the rated current for 0.1 second
	Motor slip compensation	In V/F control mode, the automatic slip compensation is available
Protection	Inverter protection	1) Against too high and too low power supply voltage 2) Against exceeding the maximum current 3) Against too high load 4) Against the loss of speed loss and stall of a motor 5) Against the current leakage to mass 6) Against overheating of the inverter 7) In addition, the inverter is protected against communication errors or incorrect feedback signals
	Safety switch	The input or a button can be programmed as a safety switch that immediately removes the voltage from the inverter outputs
	Settings protection	Settings of the inverter can be protected with a PIN number
	Error reset	Both automatic and manual error reset can be set
Braking	DC injection braking and braking using the external braking resistor	
1/0	8 digital inputs	1) Triggering inputs both with low (COM) and high (+24V) level. 2) Great freedom of function programming, for example: forward and reverse run, test run, safety switch, reset, multi-stage speed control, motor potentiometer, change of acceleration and braking times, impulse input and others
	3 analog inputs	1) They can operate as both voltage inputs $(0 \div 10 \mathrm{~V})$ and current inputs $(0 \div 20 \mathrm{~mA})$, the range of $4 \div 20 \mathrm{~mA}$ can also be set. 2) The analog inputs can be used, among other things, for setting the frequency and torque and for cooperation with the PID controller.
	2 analog outputs	1) They can operate as both voltage outputs $(0 \div 10 \mathrm{~V})$ and current outputs $(0 \div 20 \mathrm{~mA})$. 2) The analog outputs can be programmed for signaling of the following values: a) preset and current frequency b) output current voltage c) voltage in the DC circuit d) temperature of the IGBT power output stage e) output power f) motor speed g) driving torque

	Functions	Technical data
1/0	2 transistor outputs	1) High-speed pulse outputs (max. frequency 100 kHz). Available indication: a) preset frequency; b) current frequency; c) value of the current; d) output voltage; e) voltage in the DC circuit; f) temperature of the power output stage; g) output power; h) motor speed; i) output torque; 2) Transistor load - max. $20 \mathrm{~mA} / 27 \mathrm{~V}$
	1 relay output	1) Contact load capacity $5 \mathrm{~A} / 250 \mathrm{~V}$ AC or $5 \mathrm{~A} / 30 \mathrm{~V}$ DC 2) Highly programmable output functions (the indication of 34 different states of the inverter)
Adjustment of the speed	1) Wide range of speed setting options, including various combinations including digital inputs, analog inputs, potentiometer and control panel buttons, pulse inputs and motor potentiometer. 2) Multistage speed - 16 different speeds and 8 acceleration/braking times can be entered. 3) PLC mode - up to 8 steps can be programmed that are executed once or cyclically by the inverter. For each step, you can specify the speed of the motor, acceleration/braking time and duration. You can also specify whether the sequence will be executed only once or repeated in a loop.	
PID	The built-in PID contro process. Both the setp 1) Control panel (butto 2) Analog inputs; 3) Digital inputs; 4) Pulse input.	s the ability to adjust the drive operation to the requirements of the technological feedback signal can be entered from one of the following sources: tiometer);
Environmental conditions	Working temperature	$-10^{\circ} \mathrm{C} \div 40^{\circ} \mathrm{C}$. If the temperature exceeds $40^{\circ} \mathrm{C}$, the maximum output current is reduced by 1% with each additional ${ }^{\circ} \mathrm{C}$
	Storage	$-20 \div 65^{\circ} \mathrm{C}$
	Humidity	Below 90\%, no moisture condensation
	Height	$0 \div 1000 \mathrm{~m}$
	Installation	Vertical installation inside a control cabinet with good ventilation on a mounting plate made of non-combustible material. The installation method must also ensure that the inverter is protected against direct sunlight, dust, moisture, and aggressive or explosive gases.
	Ventilation	Cooling by natural and forced air circulation

FA-1F for control of the single-phase motors

Purpose

FA-1F series inverters are designed to control single-phase AC motors with an auxiliary starting capacitor.

The most important functions

- The ability to change the direction of rotation of the motor;
- The ability to adjust the rotation speed in the range from 0 to 400 Hz ;
- High driving torque at low rotation speed;
- Great freedom of programming digital and analog inputs and outputs;
- PLC mode - up to 7 steps can be programmed that are executed once or cyclically by the inverter. For each step, you can specify the speed, acceleration/braking time and duration;
- A multi-function control panel that can be dismantled and connected on the outside of the inverter.

Before connecting a single-phase motor, it is necessary to change its internal connections in order to eliminate the startup capacitor.

Typical single-phase motor diagram with starting capacitor

A modified system of the motor connections

Types of devices

Type of inverter	Voltage Input [V]	Power Input [kVA]	Voltage Output [V]	Current Output [A]	Maximum motor power [kW]	Width (W) [mm]	Height (H) [mm]	Depth (D) [mm]
FA-1F004	1×230	1.1	1×230	3	0.4	89	149	113
FA-1F007	1×230	1.8	1×230	4.7	0.7	89	149	113
FA-1F015	1×230	2.8	1×230	7.5	1.5	89	149	113
FA-1F022	1×230	3.8	1×230	10	2.2	155	230	155

FA-1F004 FA-1F004, FA-1F007, FA-1F015 inverters

Control panel

The control panel can be detached from the main body of the inverter. This allows for external mounting on the switchgear door for quick access to the settings and control of the inverter parameters.

Description of inputs and outputs

	Functions	Technical data
Power supply	Voltage and frequency	$1 \times 230 \mathrm{~V}(\pm 10 \%), 50 / 60 \mathrm{~Hz}(\pm 5 \%)$
	Output voltage	230 V
	Output frequency	$0.00 \div 400 \mathrm{~Hz}$
	V/F control characteristics	1) Constant torque characteristics 2) Characteristics with reduced torque 3) SVPWM vector control
	Initial torque	100\% for 0.50 Hz
	Dynamics of speed control	1:100
	Output speed stability	$\pm 0.5 \%$
	Driving torque boost	Automatic or user-defined (0.1 $\div 20 \%$)
	Accelerating/braking	Linear or S-curve characteristics
	Frequency setting accuracy	Digital accuracy setting: 0.01 Hz Analog accuracy setting: 1% of maximum frequency
	Overload	1) 150% of the rated current for 1 minute 2) 200% of the rated current for 0.5 second
	Motor slip compensation	In V/F control mode, the automatic slip compensation is available
Protection	Inverter protection	1) Against too high and too low power supply voltage 2) Against exceeding the maximum current 3) Against too high load 4) Against overheating of the inverter
	Safety switch	The input or a button can be programmed as a safety switch that immediately removes the voltage from the inverter outputs
	Settings protection	Settings of the inverter can be protected with a PIN number
	Error reset	Both automatic and manual error reset can be set
Braking	DC injection braking and braking using the external braking resistor	
1/0	2 digital inputs: FWD and REV	Two digital inputs to which forward (FWD) and reverse (REV) run commands are permanently assigned
	5 digital inputs	1) Universal, programmable digital inputs - digital inputs can be assigned, with up to 40 different functions for each input. 2) The $X 5$ input can be configured to operate as a high-speed pulse input.
	1 analog input	1) It can operate as both voltage inputs $(0 \div 10 \mathrm{~V})$ and current inputs ($4 \div 20 \mathrm{~mA}$). Selection is made using the switch on the inverter mainboard. 2) The analog input can be used to set the motor rotation speed.
	1 analog output	1) It can operate as both voltage output ($0 \div 10 \mathrm{~V}$) and current output ($4 \div 20 \mathrm{~mA}$). Selection is made using the switch on the inverter mainboard. 2) Selection is made using the switch on the inverter mainboard. a) preset and current frequency b) output current voltage c) voltage in the DC circuit d) temperature of the IGBT power output stage e) set value of the PID controller f) PID controller feedback value
	1 high-speed transistor output	1) High-speed pulse outputs (max. frequency 20 kHz). Available indication: a) preset and current frequency b) value of output current and voltage c) voltage in the DC circuit d) temperature of the IGBT power output stage e) set value of the PID controller f) PID controller feedback value 2) Transistor load - max. $20 \mathrm{~mA} / 27 \mathrm{~V}$

	Functions	Technical data
	2 relay outputs 5 A	1) Relay output intended to indicate the error of the inverter. 2) Contact load capacity $5 \mathrm{~A} / 250 \mathrm{~V}$ AC or $5 \mathrm{~A} / 30 \mathrm{~V} D C$.
1/0	2 relay outputs	1) Universal programmable relay output for signalling of, among others: a) drive operation; b) drive readiness for operation; c) reaching the set frequency; d) inverter error; e) external error report; f) operation in PLC mode; g) other: - contact load capacity T-5 A/250 V AC - contact load capacity T-0.5 A/250 V AC
Adjustment of the speed	1) Wide range of speed setting options, including various combinations including digital inputs, analog inputs, pote meter and control panel buttons, pulse inputs and motor potentiometer. 2) Multistage speed - 16 different speeds and 8 acceleration/braking times can be entered. 3) PLC mode - up to 7 steps can be programmed that are executed once or cyclically by the inverter. For each step, you can specify the speed of the motor, acceleration/braking time and duration. You can also specify whether the sequence will be executed only once or repeated in a loop.	
PID	The built-in PID controller enhances the ability to adjust the drive operation to the requirements of the technological process. Both the setpoint and the feedback signal can be entered from one of the following sources: 1) Control panel (buttons or potentiometer); 2) Analog input; 3) Digital input; 4) Pulse input.	
Environmental conditions	Working temperature	$-10^{\circ} \mathrm{C} \div 40^{\circ} \mathrm{C}$. If the temperature exceeds $40^{\circ} \mathrm{C}$, the maximum output current is reduced by 1% with each additional ${ }^{\circ} \mathrm{C}$
	Storage	$-20 \div 65^{\circ} \mathrm{C}$
	Humidity	Below 90\%, no moisture condensation
	Height	$0 \div 1000 \mathrm{~m}$
	Installation	Vertical installation inside a control cabinet with good ventilation on a mounting plate made of non-combustible material. The installation method must also ensure that the inverter is protected against direct sunlight, dust, moisture, and aggressive or explosive gases.
	Ventilation	Cooling by natural and forced air circulation

Soft starters

Purpose
Soft starters are used to safely start asynchronous 3-phase squirrel-cage motors.
The use of a soft starter eliminates star/delta systems, and at the same time radically reduces the current surge occurring during the start-up of even the most heavily loaded drives (such as mills and crushers).

SF-110 \div SF- 550

Functioning
The motor start-up is carried out on all three phases of the power supply, which prevents the asymmetry of the mains load and uneven load of motor windings. In addition, the advanced safety functions implemented in the soft starter protect the engine during start-up, operation, and braking.

Selected functions

- Full three-phase control;
- Six types of start-up characteristics;
- Control of torque, current, and power during both start-up and operation;
- Electronic protection against motor overload;
- Protection against underload of the motor;

Over-voltage and under-voltage protection;

- Control panel with keypad and LED display;
- An analogue output of current control;
- Programmable relay outputs;
- Error memory;
- A motor can start automatically.

Types of devices

Type Input voltage $[$ V]	Input current $[\mathrm{A}]$	Maximum motor power $[\mathrm{kW}]$	
SF-110	3×400	22	11
SF-150	3×400	30	15
SF-180	3×400	37	18
SF-220	3×400	44	22
SF-300	3×400	60	30
SF-370	3×400	74	37
SF-450	3×400	90	45
SF-550	3×400	110	55

The control panel can be detached from the main body of the inverter.
This allows for external mounting on the switchgear door for quick access to the settings and control of the soft starter parameters.

Dimensions

Functions	Technical data
Power supply	Three-phase, $3 \times 400 \mathrm{~V}$ ($\pm 15 \%$), frequency 50 Hz
Motor	Asynchronous motor, three-phase (400 V windings)
Motor control	Start-up and braking - control of all three output phases Operation - external bypass contactor required
Start-up	1) With the maximum current limitation 2) Linear voltage increase 3) Rapid start and then with maximum current limitation 4) Rapid start and then with linear voltage increase 5) Linear current increase 6) Double control of voltage and current
Braking	1) Soft braking 2) Coasting
Protection	1) Temperature soft start 2) Supply voltage loss 3) Thermal protection of the motor 4) Over-voltage and under-voltage protection 5) Short-circuit protection 6) Protection against too low load
Additional functions	1) Automatic motor start-up 2) Automatic restart in case of an error 3) Automatic multiple start-ups
Inputs	Potential-free control, relative to the COM level 1) Start 2) Stop 3) Lock
Relay outputs	1) Power supply for bypass-free contactor 2) Error indication 3) Programming - available functions: a) operation readiness b) motor start c) switching on the bypass contactor d) beginning of the braking e) motor stop f) error - drive lock g) operation
Analog output	Current signal ($0 \div 20 \mathrm{~mA}$) proportional to the actual value of the motor current
Control panel	1) Four-digit LCD display and LED control lights for: a) soft start programming b) signaling of the operating status c) displaying of current, power and motor overload information d) displaying error messages 2) Keypad for controlling the motor and configuring the soft starter 3) Ability to block or limit the change of settings
Operating conditions	Operating environment - free from dust and dirt (especially conductive) - ensuring proper ventilation of the device - protected against unauthorized access
	Temperature $\quad-25 \div 40^{\circ} \mathrm{C}$
	Humidity below 90\% (no moisture condensation)
	Vibrations below 0.5 G
	Operating altitude below 3000 m a.s.l.

consumption meters

Chapter 41

Electricity consumption meters.

For direct measurement

LE-01
1-phase, with a mechanical drum counter

reference voltage	230 V
base current	5 A
maximum current	45 A
minimum detection current	0.02 A
measurement accuracy (IEC61036)	$1{ }^{\text {st }}$ class
own power consumption	<8 VA; <0.4 W
indication range	$0 \div 99999.9 \mathrm{kWh}$
meter constant	1000 pulses/kWh
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	1000 pulses/kWh
pulse duration	70 ms
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$6 \mathrm{~mm}^{2}$ screw terminals
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 1-phase;
- Direct measurement 45 A;
- Mechanical drum counter;
- LVD compliance;
- SO pulse output.

LE-01d

1-phase, with LCD display, MID certificate

compliance	MID Directive 2014/32/EU
reference voltage	230 V
base current	$0.25 \div 5 \mathrm{~A}$
maximum current	50 A
minimum detection current	0.02 A
measurement accuracy	B class
own power consumption	<8 VA; <0.4 W
indication range	$0 \div 99999.9 \mathrm{kWh}$
meter constant	1000 pulses/kWh
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	1000 pulses/kWh
pulse duration	90 ms
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$6 \mathrm{~mm}^{2}$ screw terminals
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 1-phase;
- Direct measurement 50 A;
- MID compliance;
- LCD display;
- SO pulse output.

Power supply system of the pulse output with the external meter connected
In order to connect an external counting device to the electric energy indicator, connect a $12 \div 24 \mathrm{~V}$ DC power supply to the system in parallel through a current-limiting resistor $3.6 \div 8.2 \mathrm{k} \Omega / 0.5 \mathrm{~W}$. The maximum load on the counting circuit is 27 mA .
Changing the power polarity may damage the pulse output of the indicator.
If no external counting device is connected, do not connect the power supply to the pulse output.

compliance	MID Directive 2014/32/EU
reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 5 \mathrm{~A}$
maximum current	$3 \times 80 \mathrm{~A}$
minimum detection current	0.04 A
measurement accuracy	B class
own power consumption	<10 VA; <2 W
indication range	$0 \div 999999.99 \mathrm{kWh}$
meter constant	800 pulses/kWh
current conumption indication	$3 \times$ red LED
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	800 pulses/kWh
pulse duration	35 ms
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$16 \mathrm{~mm}^{2}$ screw terminals
dimensions	4.5 modules (75 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 3-phase;
- Direct measurement 3×80 A;
- MID compliance;
- LCD display;
- SO pulse output.

LE-03 3 -phase, with a mechanical drum counter

Functions

-3-phase;

- Direct measurement $3 \times 100 \mathrm{~A}$;
- LVD compliance;

Functions

- 3-phase;
- Direct measurement $3 \times 100 \mathrm{~A}$;
- MID compliance;

- LCD display;
- SO pulse output.

WZE-1 1-phase, with LCD display, MID certificate

compliance	MID Directive 2014/32/EU
reference voltage	230 V AC
base current	5 A
maximum current	45 A
minimum detection current	0.02 A
measurement accuracy	B class
own power consumption	<8 VA; <0.4 W
indication range	$0 \div 99999.99 \mathrm{kWh}$
meter constant	1000 pulses/kWh
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	1000 pulses/kWh
pulse duration	90 ms
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	zaciski śrubowe $6 \mathrm{~mm}^{2}$
dimensions	1 modut (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 1-phase;
- LCD display;
- Direct measurement 45 A;
- MID compliance;

WZE-3 3-phase, with LCD display, MID certificate

compliance	MID Directive 2014/32/EU
reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 5 \mathrm{~A}$
maximum current	$3 \times 80 \mathrm{~A}$
minimum detection current	0.04 A
measurement accuracy	B class
own power consumption	
indication range	$<10 \mathrm{VA} ;<2 \mathrm{~W}$
meter constant	$0 \div 999999.99 \mathrm{kWh}$
current consumption A, B, C phases indication	1000 pulses $/ \mathrm{kWh}$
read-out indication	$3 \times$ red LED
pulse output	red LED
type	
maximum voltage	open collector
maximum current	27 V DC
pulse constant	27 mA
pulse duration	1000 pulses $/ \mathrm{kWh}$
working temperature	35 ms
terminal	
dimensions	$-25 \div 55^{\circ} \mathrm{C}$
mounting	
ingress protection	$16 \mathrm{~mm}^{2}$ screw terminals

Functions

- 3-phase;
- LCD display;
- Direct measurement 3×80 A;
- SO pulse output.
- MID compliance;

For semi-indirect measurement

Purpose
The indicators are designed to work with current transformers with a secondary current of 5 A .
The maximum measured current of the system is determined by the value of the primary current of the current transformer used. (more on p. 308)

LE-02d CT 3-phase, for use with current transformers

Functioning

The indicator memory stores the values of the primary currents of the transformers that can be used. The selection of the appropriate value, consistent with the values of the connected transformers, automatically sets the appropriate factor, according to which the actual value of the consumed electrical energy of the system is calculated. The LCD display shows the actual value of the consumed energy in the format depending on the selected ratio. The ratio can be programmed using the button located under the cover of counter clamps.
Values of transformer currents stored in the memory of the indicator:
$5,25,40,50,60,75,80,100,120,150,200,250,300,400,500,600,800,1000,1200,1500,1600,2000,2500,3000,4000,5000,6000$.

reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 1.5 \mathrm{~A}$
maximum current	$3 \times 6 \mathrm{~A}$
transformer secondary current	5 A
minimum detection current	0.04 A
measurement accuracy (IEC61036)	$1^{\text {st }}$ class
own power consumption	<10 VA; <2 W
indication range	8
indication range	depend on the ratio
meter constant	depend on the ratio
current conumption indication	$3 \times$ red LED
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	depend on the ratio
pulse duration	35 ms
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$16 \mathrm{~mm}^{2}$ screw terminals
dimensions	4.5 modules (75 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 3-phase;
- Semi-indirect measurement $3 \times 6 \mathrm{~A}$;
- Transformers 5 $\div 6000 / 5$ A;

The ratio is set once by pressing the button;

- LVD compliance;
- SO pulse output.

LE-03d CT200 (300 pulses/kWh)/LE-03d CT400 (150 pulses/kWh)

for use to dedicated current transformers

Functioning

When using transformers with dedicated parameters, the indicator shows the actual value of electricity consumed by the system.

transformer type	
LE-03d CT200	200/5 A
LE-03d CT400	400/5 A
reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 1.5 \mathrm{~A}$
maximum current	$3 \times 5 \mathrm{~A}$
minimum detection current	0.04 A
measurement accuracy (IEC61036)	6) $1^{\text {st }}$ class
own power consumption	<10 VA; <2 W
number of abacus digits	8
indication range	0 $\div 9999999 \mathrm{kWh}$
meter constant (CT200/CT400)	300 pulses/kWh / 150 pulses/kWh
current consumption indication	$3 \times$ red LED
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant CT400	300 pulses/kWh
pulse constant CT200	150 pulses/kWh
pulse time	35 ms
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	7 modules (122 mm)
mounting	for TH-35 rail
ingress protection	IP20

LE-04d

3-phase, 2-tariff

Purpose

The indicator is adapted to the measurement of electricity in the double tariff system. Separate displays T_{0} and T_{1} are used to indicate the value of energy consumption in a given tariff.

Functioning

Switching between tariffs takes place when the control voltage is applied to the D input of the meter. An external control timer can be used for this purpose. The meter T_{0} reads the value of energy consumption with no control voltage at the D input. The meter T_{1} reads the value of energy consumption from the appearance of the control voltage at the input D until its loss. The operation of a given meter is indicated by the corresponding LED.

Functions

- 3-phase;
- Direct measurement $3 \times 100 \mathrm{~A}$;
- 2 tariffs;

reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 10 \mathrm{~A}$
maximum current	$3 \times 100 \mathrm{~A}$
minimum detection current	0.04 A
measurement accuracy (IEC61036)	$1^{\text {st }}$ class
own power consumption	<10 VA; <2 W
indication range	$0 \div 999999.99 \mathrm{kWh}$
meter constant	800 pulses/kWh
current conumption indication	$3 \times$ red LED
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	800 pulses/kWh
pulse duration	35 ms
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$16 \mathrm{~mm}^{2}$ screw terminals
dimensions	7 modules (122 mm)
mounting	for TH-35 rail
ingress protection	IP20

- Works with an external control timer;
- LVD compliance;
- SO pulse output.

LE-05d
 3 -phase, without neutral wire

Functioning

An electronic system, under the influence of the current flowing through it and the applied voltage, generates impulses in the amount proportional to the electric energy consumed. Energy is measured in the Aron circuit. The indicator has a SO+ - SO- pulse output. The meter has the option of sealing the input and output terminals, preventing the meter from being bypassed.

Remote reading meters

Purpose

Remote reading meters are used to indicate the consumed electricity and power supply network parameters with the ability of remote reading, archiving data or indications in financial and billing systems, BMS, SCADA, etc.

Functioning

The group of meters together along with the network communication devices (converters, concentrators, controllers), is managed by a special software allowing to record energy consumption and network parameters. The read and recorded values are consistent with the indications on display of the device. Communication with the meters is carried out in accordance with the established communication protocol through the communication port. Each of the meters is identified by a unique address given by the user.

MeternetPRO remote reading system, more information on p. 252

Active energy meters with Modbus RTU communication

LE-01M 1-phase, MID certificate

compliance	MID Directive 2014/32/EU
reference voltage	230 V
base current	5 A
maximum current	80 A
minimum detection current	0.04 A
measurement accuracy	B class
own power consumption	$<10 \mathrm{VA}$; <2 W
indication range	$0 \div 99999.99 \mathrm{kWh}$
meter constant	1600 pulses/kWh
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	1600 pulses/kWh
pulse duration	$34 \div 80 \mathrm{~ms}$
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	4.5 modules (75 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 1-phase;
- Direct measurement 100 A;
- kWh indication;
- MID compliance;
- Modbus RTU protocol;
- RS-485 port;
- SO pulse output.

reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 10 \mathrm{~A}$
maximum current	$3 \times 100 \mathrm{~A}$
minimum detection current	0.04 A
measurement accuracy (IEC61036)	$1^{\text {st }}$ class
own power consumption	<10 VA; <2 W
indication range	$0 \div 99999.99 \mathrm{kWh}$
meter constant	800 pulses/kWh
current consumption $\mathrm{A}, \mathrm{B}, \mathrm{C}$ phases indication	ion $3 \times$ red LED
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 VDC
maximum current	27 mA
pulse constant	800 pulses/kWh
pulse duration	$34 \div 80 \mathrm{~ms}$
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal 25	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	7 modules (122 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

-3-phase;

- Modbus RTU protocol;
- Direct measurement 3×100 A;
- RS-485 port;
- kWh indication;
- SO pulse output.

LE-03M CT

3-phase, for use with current transformers

Functioning

The ratio is programmable according to the programming functions of the Modbus RTU protocol.
Programmable current values of the transformers: $5,20,30,40,50,60,75,80,100,120,125,150,200,250,300,400,500,600,750,800,1000$, $1200,1250,1500,2000,2500,3000,4000,5000,6000$.

reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 1.5 \mathrm{~A}$
maximum current	$3 \times 5 \mathrm{~A}$
minimum detection current	0.04 A
measurement accuracy (IEC61036)	$1{ }^{\text {st }}$ class
own power consumption	<10 VA; <2 W
number of abacus digits	7
indication range	depend on the ratio
meter constant	depend on the ratio
current consumption $\mathrm{A}, \mathrm{B}, \mathrm{C}$ phases indication	ion $3 \times$ red LED
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	depend on the ratio
pulse duration	35 ms
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal 25	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	7 modules (122 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

-3-phase;

- Semi-indirect measurement $3 \times 5 \mathrm{~A}$;
- kWh indication;
- Modbus RTU protocol;
- Transformers $5 \div 6000 / 5$ A;
- RS-485 port;
- Ratio set according to Modbus RTU;
- SO pulse output.

Active/reactive energy meters with network parameters measurement

Functioning
The meters are used to indicate and record the consumed electricity and the parameters of the power supply network. The network parameters measured by the indicator are displayed cyclically on the LCD display. Remote reading of all indications is possible via the RS-485 standard wired communication network.

LE-01MR

1-phase, MID certificate

compliance	MID Directive 2014/32/EU
reference voltage	230 V
base current	5 A
maximum current	100 A
minimum detection current	0.02 A
measurement accuracy	B class
own power consumption	<8 VA; <0.4 W
indication range	$0 \div 99999.99 \mathrm{kWh}$
meter constant	1000 pulses/kWh
read-out indication	red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	1000 pulses/kWh
pulse duration	35 ms
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 1-phase; •Modbus RTU protocol;
- Direct measurement 100 A; •RS-485 port;
- kWh/kvar indication + network parameters;
- MID compliance;
- SO pulse output.

LE-03MP

reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 5 \mathrm{~A}$
maximum current	$3 \times 60 \mathrm{~A}$
minimum detection current	0.02 A
measurement accuracy (IEC61036)	$1{ }^{\text {st }}$ class
own power consumption	<10 VA; <1.5 W
indication range	$0 \div 999999.99 \mathrm{kWh}$
meter constant (kWh)	800 pulses/kWh
meter constant (kvarh)	800 pulses/kvarh
read-out indication	$2 \times$ red LED
pulse output	
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
pulse constant	800 pulses/kWh or 800 pulses/kvarh
pulse duration	10 ms
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$16 \mathrm{~mm}^{2}$ screw terminals
dimensions	7 modules (122 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

-3-phase;

- LVD compliance;
- Direct measurement $3 \times 60 \mathrm{~A}$;
- Modbus RTU protocol;
- $\mathrm{kWh} /$ kvar indication + network parameters;
- RS-485 port;
- SO pulse output.

Additional functions

- Internal relay for switching on of phase circuits L_{1}, L_{2}, L_{3};
- Manual control of the relay;
- Overcurrent protection - the setting of the load limit value;
- Prepaid energy - the value of active energy at which the meter disconnects the internal relay;
- Automatic operation - activating automatic relay shutdown after exceeding the set excess current and activating the prepaid function;
- Status - current status of the relay [ON/OFF].

Multi-tariff

LE-01MW

Purpose

LE-01MW is an electronic, compliant with the MID Directive single-phase electricity meter, designed for measurement in a direct 2-wire system. The built-in real-time clock allows the measurement of energy consumption divided into different tariff zones.
The meter is equipped with an RS-485 communication interface with Modbus RTU protocol, which enables remote reading and configuration of the meter.

compliance	MID Directive 2014/32/EU
reference voltage	230 V
base current	5 A
maximum current	100 A
minimum detection current	0.02 A
voltage measuring range	100 289 V AC
rated frequency	50 Hz
measurement accuracy	B class
installation	1-phase, 2-wire
overload	30×Imax/10 ms
isolation	$4 \mathrm{kV} / 1 \mathrm{~min} . ; 6 \mathrm{kV} / 1 \mathrm{\mu s}$
own power consumption	$<8 \mathrm{VA}$; <0.4 W
indication range	6 digits
meter constant	100; 1000; 2000 pulses/(kWh/kvarh)
communication	
port	RS-485
communication protocol	Modbus RTU
transmission rate	1200, 2400, 4800, 9600 bps
parity	NONE, EVEN, ODD
parity bits	2
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

- 1-phase electricity meter;
- Direct measurement up to 100 A;
- Installation on DIN rail (1 module);
- Operation in one of two measurement modes:
- measurement of active and reactive energy,
- measurement of active energy imported from and exported to the grid
- Energy measurement in four tariff zones;
- Built-in real-time clock with battery backup for switching tariff zones;
- 8 time schedules dividing the day into tariff zones;
- The possibility of settling the energy according to different schedules for working days and weekend;
- Ability to divide the year into 8 time periods: in each period the energy (for working days) can be settled according to a different schedule;
- Indication of network parameters (voltage, currents, active power, reactive power, apparent power, power factor, frequency);
- MID compliance;
- RS-485 port;
- Modbus RTU protocol;
- Backlit LCD display;
- Energy consumption indication can be read locally even if the meter is not powered.

Purpose

LE-03MW is an electronic, compliant with the MID Directive, 2-way, 4-tariff three-phase electricity meter, designed for measurement in a direct system. The built-in real-time clock allows the measurement of energy consumption divided into different tariff zones. It is equipped with communication interfaces: RS-485 with Modbus RTU protocol and optical port according to EN62056 (IEC1107) which allows remote reading and configuration of the meter.

compliance	MID Directive 2014/32/EU
reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 5 \mathrm{~A}$
maximum current	$3 \times 80 \mathrm{~A}$
minimum detection current	0.04 A
measured voltage	
L-N	100 289 V V AC
L-L	$173 \div 500 \mathrm{~V} \mathrm{AC}$
measurement accuracy	B class
own power consumption	<10 VA; <1.5 W
indication range	$0 \div 999999.99 \mathrm{kWh}$
meter constant (kWh)	800 pulses/kWh
meter constant (kvarh)	800 pulses/kvarh
read-out indication	$2 \times$ red LED
pulse outputs	
outputs number	2
type	OC (open collector)
maximum voltage	27 V DC
maximum current	27 mA
pulse constant output 1	1, 10,100, 1000 pulses/kWh
pulse constant output 2	1000 pulses/kvar
pulse duration	10 ms
communication	
port	RS-485
communication protocol	Modbus RTU
transmission rate	1200, 2400, 4800, 9600 bps
parity	EVEN
parity bits	1
optical port	according to EN62056 (IEC1107)
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	4.5 modules (76 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

- 4-tariff;
- 2-way (import/export);
- Direct measurement up to 80 A;
- Energy measurement in 4 tariff zones;
- Built-in real-time clock with battery backup for switching tariff zones;
- Total and tariff-divided consumption registration:
- total active and reactive energy;
- active and reactive energy divided into individual quadrants;
- 8 time schedules dividing the day into tariff zones;
- The possibility of settling the energy according to different schedules for working days and weekend;
- Ability to divide the year into 8 time periods: in each period the energy (for working days) can be settled according to a different schedule;
- Indication of network parameters (voltage, currents, active power, reactive power, apparent power, power factor, frequency);
- Calculation of power demand for individual tariffs;
- Additional, resettable energy consumption meter;
- MID compliance;
- RS-485 port;
- Modbus RTU protocol;
- Optical communication port in accordance with EN62056 (IEC1107);
- $2 \times$ SO pulse outputs with a programmable number of pulses per $\mathrm{kWh} / \mathrm{kvarh}$;
- Multifunctional LCD display.

LE-03MW CT

LE-03MW CT is an electronic, 4-tariff, 2-way three-phase electricity meter, designed for measurement in a semi-indirect system. The built-in real--time clock allows the measurement of energy consumption divided into different tariff zones. It is equipped with communication interfaces: RS-485 with Modbus RTU protocol and optical port according to EN62056 (IEC1107) which allows remote reading and configuration of the meter.

reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 1.5 \mathrm{~A}$
maximum current	3×6 A
minimum detection current	0.02 A
measured voltage	
L-N	100 289 V AC
L-L	$173 \div 500 \mathrm{~V} \mathrm{AC}$
measurement accuracy (IEC61036)) $1^{\text {st }}$ class
own power consumption	<10 VA; <1.5 W
indication range	$0 \div 999999.99 \mathrm{kWh}$
meter constant (kWh)	12000 pulses/kWh
meter constant (kvarh)	12000 pulses/kvarh
read-out indication	$2 \times$ red LED
pulse outputs	
outputs number	2
type	OC (open collector)
maximum voltage	27 V DC
maximum current	27 mA
pulse constant output 1	12000, 1200, 120, 12 pulses/kWh
pulse constant output 2	12000 pulses/kvar
pulse duration	10 ms
communication	
port	RS-485
communication protocol	Modbus RTU
transmission rate	1200, 2400, 4800, 9600 bps
parity	EVEN
parity bits	1
optical port	according to EN62056 (IEC1107)
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	4.5 modules (76 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

- 4-tariff;
- 2-way (import/export);
- Semi-indirect energy measurement using 5 A secondary current transformers;
- Energy measurement in 4 tariff zones;
- Built-in real-time clock with battery backup for switching tariff zones;
- Total and tariff-divided consumption registration:
- total active and reactive energy;
- active and reactive energy divided into individual quadrants;
- 8 time schedules dividing the day into tariff zones;
- The possibility of settling the energy according to different schedules for working days and weekend;
- Ability to divide the year into 8 time periods: in each period the energy (for working days) can be settled according to a different schedule;
- Indication of network parameters (voltage, currents, active power, reactive power, apparent power, power factor, frequency);
- Calculation of power demand for individual tariffs;
- Additional, resettable energy consumption meter;
- RS-485 port;
- Modbus RTU protocol;
- Optical communication port in accordance with EN62056 (IEC1107);
- $2 \times$ SO pulse outputs with a programmable number of pulses per kWh/kvarh;
- Multifunctional LCD display.

Active/reactive imported/exported energy meters, bi-directional with network parameters measurement

With RS-485 port and Modbus RTU protocol

LE-01MQ
1-phase, 2-way, 4-quadrant electricity meter, for photovoltaic systems, MID certificate

compliance	MID Directive 2014/32/EU
reference voltage	230 VAC
base current	5 A
maximum current	100 A
minimum detection current	0.02 A
measurement accuracy	B class
own power consumption	<10 VA; <2 W
indication range	$0 \div 99999.99 \mathrm{kWh}$
meter constant (kWh)	1,10,100, 1000 pulses/kWh
meter constant (kvarh)	1, 10, 100, 1000 pulses/kvarh
read-out indication	$2 \times$ LED
pulse outputs	2
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
output 1 (set up)	1, 10, 100, 1000 pulses [kWh/kvarh]
pulse duration (set up)	60, 100, 200 ms
output	3200 pulses/kvarh
pulse duration	200 ms
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$16 \mathrm{~mm}^{2}$ screw terminals
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

- 1-phase;
- 2-way (4-quadrant);
- Direct measurement 100 A;
- Indications of kWh/kvar (imported/exported);
- Indication of network parameters
- MID compliance;

Modbus RTU protocol

- RS-485 port;
- $2 \times$ pulse output SO;
- Backlit, multifunctional LCD display;
- Password-protected meter configuration.

LE-03MQ

compliance	MID Directive 2014/32/EU
reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 10 \mathrm{~A}$
maximum current	$3 \times 100 \mathrm{~A}$
minimum detection current	0.04 A
measurement accuracy	B class
own power consumption	<10 VA; <2 W
indication range	0 $\div 999999.99 \mathrm{kWh}$
meter constant (kWh)	0.01; 0.1; 1; 10; 100 pulses/kWh
meter constant (kvarh)	0.01; 0.1; 1; 10; 100 pulses/kvarh
read-out indication	$2 \times$ LED
pulse outputs	2
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
output 1 (set up)	$0.01 ; 0.1 ; 1,10,100,1000$ pulses [kWh/kvarh]
pulse duration (set up)	60, 100, 200 ms
output 2	3200 pulses/kvarh
pulse duration	200 ms
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	4.5 modules (76 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

- 3-phase;
- 2-way (4-quadrant);
- Direct measurement 100 A;
- Indications of kWh/kvar (imported/exported);
- Indication of network parameters
- MID compliance;
- Modbus RTU protocol;

compliance	MID Directive 2014/32/EU
reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 5 \mathrm{~A}$
maximum current	3×6 A
minimum detection current	0.02 A
measurement accuracy	B class
own power consumption	<10 VA; <2 W
number of reading fields	8 digits
indication range	depend on the ratio
meter constant (kWh)	0.01; 0.1; 1; 10; 100 pulses/kWh
meter constant (kvarh)	0.01; 0.1; 1; 10; 100 pulses/kvarh
read-out indication	1×LED
pulse outputs	2
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
output 1 (set up)	$0.01 ; 0.1 ; 1,10,100,1000$ pulses [kWh/kvarh]
pulse duration (set up)	60, 100, 200 ms
output 2	3200 pulses/kvarh
pulse duration	200 ms
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	4 modules (72 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

-3-phase;

- 2-way (4-quadrant);
- 1 A or 5 A transformers;
- Current ratio $1 \div 9999$;
- Adjustable measuring voltage $100 \div 500 \mathrm{~V}$;
- Voltage ratio $1 \div 9999$;
- Ratio set according to Modbus RTU;
- Indications of kWh/kvar (imported/exported);
- Indication of network parameters;
- MID compliance;
- Modbus RTU protocol;
- RS-485 port;
- $2 \times$ pulse output SO;
- Backlit, multifunctional LCD display;
- Password-protected meter configuration.

MeternetPRO network parameter recording system

Purpose

The MeternetPRO application enables remote reading of states and indications of meters, multimeters, measuring transducers, I/O extension modules and other measuring devices communicating according to Modbus RTU and M-Bus protocols. Data exchange between the devices is carried out via RS-485, M-Bus or LAN networks. The program along with its database is installed on a special MT-CPU-1 server, which operates in the LAN network. The software user interface is a Web application (website). The program is accessible through any web browser. In the case of a LAN with a public IP address, you can configure the program to operate and read data over the Internet.

LE-01MB

compliance	MID Directive 2014/32/EU
reference voltage	230 V
base current	5 A
maximum current	100 A
minimum detection current	0.02 A
measurement accuracy	B class
own power consumption	<10 VA; <2 W
indication range	$0 \div 99999.99 \mathrm{kWh}$
meter constant (kWh)	1, 10, 100, 1000 pulses/kWh
meter constant (kvarh)	1, 10, 100, 1000 pulses/kvarh
read-out indication	$2 \times$ LED
pulse outputs	2
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
output 1 (set up)	1, 10, 100, 1000 pulses [$\mathrm{kWh} / \mathrm{kvarh}$]
pulse duration (set up)	60, 100, 200 ms
output 2	3200 pulses/kvarh
pulse duration	200 ms
communication protocol	M-Bus
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$16 \mathrm{~mm}^{2}$ screw terminals
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

- 1-phase;
- 2-way (4-quadrant);
- Direct measurement 100 A;
- Indications of kWh/kvar (imported/exported);
- Indication of network parameters;
- MID compliance;
- M-Bus protocol;
- $2 \times$ pulse output SO;
- Backlit, multifunctional LCD display;
- Password-protected meter configuration.

LE-03MB 3-phase, 2-way, 4-quadrant electricity meter, MID certificate

compliance	MID Directive 2014/32/EU
reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 10 \mathrm{~A}$
maximum current	$3 \times 100 \mathrm{~A}$
minimum detection current	0.04 A
measurement accuracy	B class
own power consumption	<10 VA; <2 W
indication range	0 $\div 999999.99 \mathrm{kWh}$
meter constant (kWh)	0.01; 0.1; 1; 10; 100 pulses/kWh
meter constant (kvarh)	0.01; 0.1; 1; 10; 100 pulses/kvarh
read-out indication	2×LED
pulse outputs	2
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
output 1 (set up)	$0.01 ; 0.1 ; 1,10,100$ pulses [kWh/kvarh]
pulse duration (set up)	60, 100, 200 ms
output 2	3200 pulses/kvarh
pulse duration	200 ms
communication protocol	M-Bus
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	4.5 modules (76 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

- 3-phase;
- 2-way (4-quadrant);
- Direct measurement 100 A;
- Indications of kWh/kvar (energy imported/exported);
- Indication of network parameters;

MID compliance;

- M-Bus port and protocol;
- $2 \times$ pulse output SO;
- Backlit, multifunctional LCD display;
- Password-protected meter configuration.

reference voltage	$3 \times 230 / 400 \mathrm{~V}$
base current	$3 \times 5 \mathrm{~A}$
maximum current	$3 \times 6 \mathrm{~A}$
minimum detection current	0.02 A
accuracy class (IEC61036)	$1{ }^{\text {st }}$ class
own power consumption	<10 VA; <2 W
number of reading fields	8 digits
indication range	depend on the ratio
meter constant (kWh)	0.01; 0.1; 1; 10; 100 pulses/kWh
meter constant (kvarh)	0.01; 0.1; 1; 10; 100 pulses/kvarh
read-out indication	$2 \times$ LED
pulse outputs	2
type	open collector
maximum voltage	27 V DC
maximum current	27 mA
output 1 (set up)	$0.01 ; 0.1 ; 1,10,100,1000$ pulses [kWh/kvarh]
pulse duration (set up)	60, 100, 200 ms
output 2	3200 pulses/kvarh
pulse duration	200 ms
communication protocol	M-Bus
working temperature	$-25 \div 55^{\circ} \mathrm{C}$
terminal	$25 \mathrm{~mm}^{2}$ screw terminals
dimensions	4 modules (72 mm)
mounting	for TH-35 rail
ingress protection	IP51

Functions

-3-phase;

- 2-way (4-quadrant);
- 1 A or 5 A transformers;
- Current ratio 1 $\div 9999$;
- Adjustable measuring voltage $100 \div 500 \mathrm{~V}$;
- Voltage ratio $1 \div 9999$;
- Ratio set according to Modbus RTU;
- Indications of kWh/kvar (imported/exported);
- Indication of network parameters;
- M-Bus port/protocol;
- $2 \times$ pulse output SO;
- Backlit, multifunctional LCD display;
- Password-protected meter configuration.
\square Measuring systems for the LE-03MB CT meter can be found on page 250.

Measuring systems for meters: LE-03MB, LE-03MB CT, LE-03MQ, LE-03MQ CT

LE-03MB

230 V AC
1-phase 2-wire installation

$3 \times 400 \mathrm{~V}$
3-phase 3-wire installation (without neutral wire)

$3 \times 400 \mathrm{~V}$
3-phase 3-wire installation (without neutral wire)

LE-03MB CT

3-phase, 2-way, 4-quadrant electricity meter

230 V AC
1-phase 2-wire installation

$3 \times 400 \mathrm{~V}$
3 -phase 3-wire inst. (without neutral wire)

$3 \times 230 \mathrm{~V}+\mathrm{N}$
3-phase 4-wire installation

LE-03MQ
3-phase, 2-way, 4-quadrant electricity meter, MID certificate

LE-03MQ CT 3 -phase, 2 -way, 4 -quadrant electricity meter, MID certificate

230 V AC
1-phase 2-wire installation

$3 \times 400 \mathrm{~V}$
3-phase 3-wire inst. (without neutral wire)

$3 \times 230 \mathrm{~V}+\mathrm{N}$ 3-phase 4-wire installation

DC electricity meters

Purpose

A meter designed to monitor parameters and measure energy consumption in DC circuits (photovoltaic installations, car charging stations, etc.).

LE-01DC 1 -phase, 2 -way, 4 -quadrant electricity meter

power supply	
voltage	$85 \div 300 \mathrm{~V} \mathrm{AC}$
power consumption	<8 VA, 0.4 W
measurement inputs	
voltage	$5 \div 1000$ V DC
current	external measuring shunt
secondary side	75 mV
primary side	up to 2000 A
accuracy class	
voltage	0.5 \%
current	0.5 \%
active power	1.0 \%
active energy	$1^{\text {st }}$ class
meter constant	1000 pulses/kWh
display	LCD backlit display, 8 characters
auxiliary relay	
function	current overload indication
contact	$1 \times \mathrm{NO}$
maximum load current (AC-1)	1 A
working voltage	250 V AC
isolation	4.4 kV (1 min.) / $6.4 \mathrm{kV}(1,2 \mu \mathrm{~s})$
communication	
port	RS-485
communication protocol	Modbus RTU
working temperature	$-25 \div 70^{\circ} \mathrm{C}$
terminal	
DC + , DC- terminals	$2.5 \mathrm{~mm}^{2}$
other	$1.5 \mathrm{~mm}^{2}$
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP40

Functions

- DC voltage measurement in the range of $5 \div 1000 \mathrm{~V}$ DC;
- DC current measurement with measuring shunts up to 2000 A and secondary voltage of 75 mV ;
- Power supply of the meter with 230 V AC voltage;
- 4-tariff, 2-way active energy measurement;
- Additional, cashable energy consumption meter;
- Measurement of instantaneous DC network parameters: voltage, current and power;
- RS-485 interface and Modbus RTU protocol support;
- Alarm function - signaling the current overload of the meter;
- Built-in relay with alarm signaling capability;
- Backlit LCD display;
- Built-in clock with battery backup for tariff zone operation;
- DIN rail mounting, 2S housing.

Related devices with LE-01DC

Purpose

The measuring shunt is designed to extend the measuring range of current meters.

More information p. 312

Remote reading and recording system

MeternetPRO

Purpose
The MeternetPRO application enables remote reading of states and indications of meters，multimeters，measuring transducers，I／O extension mo－ dules and other measuring devices communicating according to Modbus RTU and M－Bus protocols．Data exchange between the devices is carried out via RS－485，M－Bus or LAN networks．The program along with its database is installed on a special MT－CPU－1 server，which operates in the LAN network．The software user interface is a Web application（website）．The program is accessible through any web browser．In the case of a LAN with a public IP address，you can configure the program to operate and read data over the Internet．

Areas of application

－Large factories；
－Small production facilities；
－Office buildings；
－Apartment buildings
－Apartment blocks；
－Shopping malls；

Frequent applications

－Measurements for energy audit；
－Reports on the consumption of electricity，water，gas，etc．
－Subtenant billings；
－Analysis of production and operating costs；

Functions

－The system does not require the installation of any programs on the user＇s hardware；
－Local and remote access through any web browser；
－No workstation licenses－an unlimited number of users；
－The MT－CPU－1 server is a stand－alone unit that manages devices and the archive；
－Supported protocols：Modbus RTU，Modbus TCP，M－Bus，DLMS；
－Supported ports：Ethernet RJ－45，RS－485，USB $\times 4$ ；
－Status－preview panel of performance and correctness of system operation；
－Reports－a preview of current and archival recorded values（results table，graphs），report filters，time ranges，subscription billing of energy consumption，etc
－Dashboard－a window of graphic indicators，visualization，and control panels（webscada）；
－Widgets－graphical indicators assigned to the recorded values （hints，bar graphs，trends，thermal maps，etc．）；

Markets；
－Public buildings；
－Single－family housing estates；
－Campings；
－Plot gardens．
－Power／current／voltage charts；
－On－line parameter monitoring；
－Supervision of power limits（power guard）；
－Adjusting electricity tariff．
－Configuration－simple system settings without programming skills，the definition of device names，system settings；
－Data acquisition－direct writing to ．csv file，transfer over LAN，import of data in the form of ．csv and ．xls file to user＇s computer，external SQL databases；
－＂Mathematics＂software module－for algebraic transformations of read values；
－SMS／e－mail alerts；
－Manual and automatic control（threshold／hysteresis double state control，power guard）；
－The differential function allows you to convert the electricity con－ sumption［kWh］into instantaneous power［kW］．The result is a graphi－ cal profile of power consumption that allows you to track trends and find the peak power consumption．
－Integration with external devices such as water meters，gas meters，etc．

Purpose

Central unit for managing the system. The computer queries the devices, archives the data, manages the communication and distribution of data.

supply voltage	$9 \div 30 \mathrm{VDC}$
ports	
LAN	RJ-45
USB	2.0
RS-485	Modbus RTU
working status indication	$5 \times$ LED
RTC clock	YES
system memory	8 GB
battery type	2032 (lithium)
battery life	6 years*
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.3 Nm
dimensions	6 modules (105 mm)
mounting	for TH-35 rail
ingress protection	IP20
* battery life depends on	

Archives and data

Data archiving is carried out in a designated memory space:

- storage drives: HDDs and SSDs with USB 3.0/2.0 connection;
- flash memory (pendrive);

Pendrive64 uSB flash memory 64 GB

Purpose

External memory for operation with MT-CPU-1 hardware server for the MeternetPRO system archive.

memory type	flash
interface	USB 3.1
read speed	$220 \mathrm{MB} / \mathrm{s}$
write speed	$120 \mathrm{MB} / \mathrm{s}$
power consumption	0.35 W
mounting	USB port

SSD240 240 GB usB flash memory / SSD280
280 GB USB flash memory

Purpose

External memory to work with the MT-CPU-1 hardware server for the MeternetPRO system archive.

Accessories included with the memory stick:

- Y-type connection cable USB MicroB - USB Ax2
- USB power supply 5V (type ZI-USB-5)

memory type	SSD
interface	USB 3.0
read speed	$430 \mathrm{MB} / \mathrm{s}$
write speed	$400 \mathrm{MB} / \mathrm{s}$
power consumption	0.35 W
standby	1.1 W
on	USB Micro-B
terminal	$63 \times 18 \times 50 \mathrm{~mm}$
dimensions	for $\mathrm{TH}-35$ rail
mounting	IP20
ingress protection	

MeternetPRO

Operation

The system application, together with the MT-CPU-1 server is the central unit of the system. For measuring devices, it acts as a Master. Data exchange between devices is carried out via RS-485 port, built into MT-CPU-1 server, standard RS-485 or M-Bus to USB converters or LAN converters (Ethernet/TCP-IP).
The system does not require the installation of any programs on the user's hardware. The server is a LAN device and serves as a Web server. The application is available through a web browser for every computer operating in the same subnet. To access the system, use the login panel. In the case of LAN with a router (with a public IP address), it is possible to read data over the Internet. The read data are archived on external memory (HDD/SDD, Flash) connected to the server or sent to an external database (hosting). Data can be freely shaped according to software functions or imported to the user's computer in the form of .csv files (opened in Excel or any other database program).

Software interface

Screenshot from the "Reading" section - results table

Screenshot from the "Dashboard" section - graphic indicators

Screenshot from the "Dashboard" section - time course

Screenshot from the "Configuration" section

佂

Licenses

- LIC-MT-B basic license:
- registration of all selected parameters to the system database;
- the operating status of the system;
- ten tokens;
- table of current readings;
- reports: tabular, historical for a given time point, historical graph for one parameter for a selected time period; export of generated reports to a .csv file (opened in Excel or any other database program) and a dump of generated graphs to a .jpg file;
- dashboard: 1 dashboard + 3 indicators (widgets).
- LIC-MT-D - device license (token)

Tokens are so-called system points. Each device added to the system or a specific software license takes an appropriate number of tokens. Within the purchased number of tokens, the user can freely match different devices in the system, for example, having a license for 8 tokens, we can assemble four LE-03M meters in the system or only one LE-03MP meter. The number of tokens for a given device or software licenses is presented by the current inventory and price list available on the website: www.meternetpro.pl. Adding of purchased tokens to the system is done using the sent license code.

- LIC-MT-R - extension license - "reports" module

This version with an active license allows you to create multiple parallel incremental reports. It is used as a module of subscription billing of electricity consumption (or other recorded incremental values, such as consumption of water, heat, etc.). It allows you to calculate increments in the determined settlement periods. Cycles: monthly, weekly, daily, hourly. Additionally, the license activates the ability to create historical graphs for 10 parameters on a one-time axis (such as dependence of consumed power on temperature).

- LIC-MT-P -extension license - "dashboard" module

A panel of graphical indicators of current indications of selected parameters. The version with an active "dashboard" license allows you to create an unlimited number of dashboards and indicators (widgets).

- LIC-MT-L - software module - "control and alarm" module

Module for assigning event logic depending on the input parameter value:

- e-mail notifications;
- SMS notifications;
- manual ON/OFF control of the MR-RO-1 and MR-RO-4 output modules;
- automatic ON/OFF control of the MR-RO-1 and MR-RO-4 output modules on a bi-state adjustment basis;
- manual control of the output analog voltage signal of the MR-AO-1 module;
- automatic control of the output analog voltage signal of the MR-AO-1 module;
- LIC-MT-M - extension license - "math" module

This module enables algebraic transformations (calculations) of registered values (sum, difference, multiplying, division, differential, average, min., max., etc.). The result is recorded as a virtual device parameter and is subject to all software rules as any real device result.

- LIC-MT-K -extension license - "camping" module

This module allows you to calculate the consumption of electricity or other utilities (water, gas, etc.) in a given time by means of the manual START/ STOP control and to settle the user's account with the due amount in accordance with the set rate. Each billing report starts and ends with printing to a PDF file. The billing archive is saved in a special file in the Files tab and can be exported to a CSV file.

- LIC-MT-Z -extension license - "prepaid" module

Module allowing for prepayment management of electricity or other utilities (water, gas, etc.) consumption. It allows you to automatically disconnect the power source when the set threshold is exceeded or to manually control on an ON/OFF basis.

- LIC-MT-I - extension license - external implementation

Software complementation of the system library with a foreign device, not produced by the F\&F. Service available at the request of the client. It allows you to integrate other Modbus RTU-compatible devices. Each device will have an individual number of tokens assigned to it.

Subscriber electricity consumption settlements

LIC-MT-R - software extension license - "reports" module
The module of subscription settlements of electricity consumption (or other recorded incremental values, such as consumption of water, heat, etc.). It allows you to calculate increments in the determined billing periods. Cycles: monthly, weekly, daily, hourly. This version with an active license allows you to create multiple parallel reports.

2. Metenet PRO $\times+$																
(1) Niezabezpieczona \| 79.190.217.187/report/09955af0-f456-11e6-9b11-07680beazf84																
$m_{\text {eternet }}$		Status	- odczyt	แreaporty	三 Pupit	- Konfiguracia		- Pliki	4 Uzytkownicy	(1) Pomoc		\% 180				
miesięczny															\square Exycia	$\times \times$
Panel raport przyrostowy			Opls 3	Opis parametru	$\begin{gathered} 01.06- \\ \text { 01.07.2018 } \\ \text { przyrost } \end{gathered}$	01.07 01.08 .2018 pryyrost	$\begin{gathered} \text { 01.08- } \\ \text { 01.09.2018 } \\ \text { pryyrost } \end{gathered}$	01.09 01.10 .2018 pryrost	01.1001.11.2018 przyrost	01.1101.12.2018 przyrost	01.12.201801.01.2019 przyros	01.01 01.02 .2019 przyrost	01.02. 01.03 .2019 pryyrost	01.0301.04.2019 przyrost	01.04 01.05.2019 przyrost	
Nazwa	Opis 1	Opis 2														
meter-1					$123,6 \mathrm{kWh}$	$98,7 \mathrm{kwh}$	$102,8 \mathrm{kWh}$	130,2 kWh	97,4 kwh	92,0 kWh	$115,8 \mathrm{kwh}$	117,3 kwh	$87,5 \mathrm{kwh}$	99,1 kWh	111,9 kWh	118,7 kwh
meter-2					63,1 kwh	67,3 kwh	$62,2 \mathrm{kWh}$	$66,9 \mathrm{kwh}$	$67,7 \mathrm{kwh}$	$71,9 \mathrm{kWh}$	$66,2 \mathrm{kwh}$	$69,1 \mathrm{kwh}$	$59,8 \mathrm{kWh}$	65,2 kwh	$72,0 \mathrm{kWh}$	77,6 kWh
meter-3					$87,2 \mathrm{kWh}$	$83,1 \mathrm{kwh}$	89,3 kwh	91,7 kwh	92,4 kwh	95,3 kWh	$86,2 \mathrm{kwh}$	$88,7 \mathrm{kwh}$	95,3 kWh	99,1 kwh	$103,7 \mathrm{kWh}$	105,1 kwh
meter-4					$145,8 \mathrm{kWh}$	136,1 kwh	$126,8 \mathrm{kWh}$	139,0 kWh	$145,7 \mathrm{kWh}$	$144,6 \mathrm{kWh}$	151,2 kwh	$158,9 \mathrm{kWh}$	$142,7 \mathrm{kWh}$	148,2 kWh	$153,0 \mathrm{kwh}$	$160,1 \mathrm{kWh}$
meter-5					$211,8 \mathrm{kWh}$	202,8 kwh	$196,5 \mathrm{kWh}$	187, 2 kWh	$173,0 \mathrm{kWh}$	$189,9 \mathrm{kWh}$	193,1 kwh	194,7 kWh	183,2 kWh	$194,8 \mathrm{kWh}$	$199,0 \mathrm{kWh}$	207, 8 kwh
meter-6					$117,3 \mathrm{kWh}$	$87,5 \mathrm{kwh}$	99,1 kwh	$111,9 \mathrm{kWh}$	$115,8 \mathrm{kWh}$	$118,7 \mathrm{kWh}$	$123,6 \mathrm{kWh}$	$98,7 \mathrm{kwh}$	102,6 kWh	130,2 kWh	97,4 kwh	92,0 kwh
meter-7					$69,1 \mathrm{kWh}$	$59,8 \mathrm{kwh}$	$65,2 \mathrm{kwh}$	$72,0 \mathrm{kwh}$	$66,2 \mathrm{kwh}$	77,6 kWh	$63,1 \mathrm{kwh}$	$67,3 \mathrm{kwh}$	$62,2 \mathrm{kWh}$	$66,9 \mathrm{kwh}$	$67,7 \mathrm{kwh}$	$71,9 \mathrm{kWh}$
meter-8					$88,7 \mathrm{kWh}$	95,3 kWh	99,1 kwh	$103,7 \mathrm{kwh}$	$86,2 \mathrm{kWh}$	105,1 kWh	$87,2 \mathrm{kWh}$	$83,1 \mathrm{kWh}$	$89,3 \mathrm{kWh}$	$91,7 \mathrm{kwh}$	92,4 kwh	$95,3 \mathrm{kWh}$
meter-9					$158,9 \mathrm{kWh}$	$142,7 \mathrm{kwh}$	148,2 kWh	$153,0 \mathrm{kWh}$	$151,2 \mathrm{kWh}$	160,1 kWh	$145,8 \mathrm{kwh}$	136,1 kwh	$126,8 \mathrm{kWh}$	$139,0 \mathrm{kWh}$	145,7 kWh	$144,6 \mathrm{kWh}$
meter-10					$194,7 \mathrm{kWh}$	183,2 kWh	$194,8 \mathrm{kWh}$	199,0 kWh	193,1 kWh	207,8 kwh	$211,8 \mathrm{kwh}$	202,8 kWh	196,5 kWh	187,2 kWh	$173,0 \mathrm{kWh}$	189,9 kwh
														$\leftarrow \mathrm{Po}$	poreati	Nastepny \rightarrow

Server location

Install the server in a separate distribution box. Avoid installation in switchgear with high load devices and devices producing strong electromagnetic fields. In case of strong interference caused by high loads, operation of induction machines (motors), operation of inverters and a large number of capacitive load receivers (LEDs), it is recommended to install the server in a metal box with grounding.

Power supply

The use of the backup power supply is recommended.
System restart can take up to $5 \div 7$ minutes.
During that time, no data from the system will be recorded. Also, in case of sudden voltage loss, there is a risk of damage to the data recorded in external memory. Use a UPS or backup power supply system based on the ECH-06 module.

Types of devices	Description of the device	Page
ECH-06	Backup power supply module	289
AKU-12	12 V V 1.3 Ah gel battery	-
ZI-24	24 V 30 W stabilized power supply	197

The ECH-06 module constantly monitors the state of charge of the battery and charges it automatically when the main power supply voltage is present. In case of main voltage loss or drop of its value below the voltage on the battery, the receiver is powered from the battery.

Devices associated with MeternetPRO

Converters

MAX-CN-USB-485

RS-485 <-> USB converter

The converter enables access to the RS-485 port from any PC or other Master-type device equipped with a USB interface.

wire length	1.8 m
terminal RS-485	$2 \times 0.34 \mathrm{~mm}^{2}$

MAX-CN-ETH-485

The converter enables access to the RS-485 serial port from any computer in the local network, and, using an IP address, from any computer in the world connected to the Internet. The communication takes place via TCP, UDP, DHCP and other protocols.

MAX-CN-GPRS-485

RS-485 <-> GSM/GPRS network converter

The CN-GPRS-485 converter is used for bidirectional, transparent data transmission from the RS-485 serial port to the network.
The converter supports the Identity and Heartbeat packet mechanisms and socket connections.

power	$9 \div 24 \mathrm{VDC}$
power supply (included)	9 V DC
RS-485 connector	$1.0 \mathrm{~mm}^{2}$
TCP connector	RJ- 45 socket
dimensions	$86 \times 100 \times 26 \mathrm{~mm}$
mounting	surface

Type	Description	Page
DMM-5T-2	Multimeter, indirect 4-quadrant measurement 5 $\div 9000 \mathrm{~A}$, measurement of $\mathrm{U}, \mathrm{I}, \mathrm{F}, \mathrm{AE}, \mathrm{RE}, \mathrm{P}, \mathrm{Q}, \cos$	209
DMM-5T-3	Multimeter, indirect 4-quadrant measurement $1 \mathrm{~mA} \div 25000 \mathrm{~A}$, measurement of $\mathrm{U}, \mathrm{I}, \mathrm{F}, \mathrm{AE}, \mathrm{RE}, \mathrm{P}, \mathrm{Q}, \cos$	208
LE-01M	1-phase direct energy meter 100 A	240
LE-03M	3 -phase direct energy meter 100 A	241
LE-03M CT	3 -phase direct energy meter $5 \div 6000 \mathrm{~A}$	241
LE-01MR	Energy meter, direct 1-phase 100 A , measurement of U, I, F, AE, RE, P, Q, T	242
LE-03MP	Energy meter, direct 3-phase 60A, measurement of U, I, F, AE, RE, P, Q, cos, T, Prepaid	242
LE-01MQ	Energy meter, direct 2-way 1-phase 100 A , measurement of U, I, F, AE, RE, P, Q, cos	246
LE-03MQ	Energy meter, direct 2-way 3-phase 100 A , measurement of U, I, F, AE, RE, P, Q, cos	246
LE-03MQ CT	Energy meter, semi-indirect 2-way 1-phase 5A, measurement of U, I, F, AE, RE, P, Q, cos	247
LE-01MB	Energy meter, direct 2-way 1-phase 100 A , measurement of U, I, F, AE, RE, P, Q, cos; M-Bus	248
LE-03MB	Energy meter, direct 2-way 3-phase 100A, measurement of U, I, F, AE, RE, P, Q, cos; M-Bus	248
LE-03MB CT	Energy meter, semi-indirect 2-way 3-phase 5A, measurement of U, I, F, AE, RE, P, Q, cos; M-Bus	249
LE-03MW	Energy meter, direct 2-way 3-phase measurement up to 80A, measurement of U, I, F, AE, RE, P, Q, cos; Modbus	244
LE-03MW CT	Energy meter, semi-indirect 2-way 3-phase 5A, measurement of U, I, F, AE, RE, P, Q, cos; Modbus	245
MB-1U-1	1-phase measuring transducer for AC/DC voltage	295
MB-3U-1	3 -phase measuring transducer for $\mathrm{AC} / \mathrm{DC}$ voltage	295
MB-11-1	1-phase measuring transducer for $A C / D C$ intensity	295
MB-31-1	3 -phase measuring transducer for AC/DC intensity	295
MB-AHT-1	Humidity and temperature transducer	300
MB-DS-2	Temperature measuring transmitter, DS sensor ($\times 2$), range $-50 \div 130^{\circ} \mathrm{C}$	297
MB-PT-100	Temperature measuring transducer, PT-100 sensor, range -100 $\div 400^{\circ} \mathrm{C}$	298
MB-TC-1	Temperature transducer for use with thermocouples	298
MB-LI-4	4-channel pulse counter	299
MB-LG-4	4-channel operating time counter	299
MR-DIO-1	Digital I/O expansion module ($\times 6$)	301
MR-DI-4	Digital I/O expansion module ($\times 4$)	301
MR-RO-1	16 A relay output expansion module ($\times 1$)	302
MR-RO-4	16 A relay output expansion module ($\times 4$)	302
MR-AI-1	Analog input expansion module $4 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{~V}(\times 4)$	303
MR-AO-1	$0 \div 10 \mathrm{~V}$ relay output expansion module ($\times 4$)	303

It is possible to read the registers of devices outside the F\&F offer.
This requires an individual configuration of the program according to the user's requirements.

Interesting and practical

EU TYPE EXAMINATION CERTIFICATE TRANSFER NOTIFICATION

This notification confirms that, at the request of the certificate holder listed below, a transfer of responsibility for the EU type examination certificates listed on page 2 has been completed.

Transfer Notification No. MID/TR-051

Certificate Holder / Manufacturer	F+F Filipowski Sp.j U. Konstantynowska 79/81, 95-200 Pabianice, Poland
Directive	Measuring Instruments Directive 2014/32/EU
Transfer Details	The technical file and associated supporting information for the certification (s) listed on page 2.
Transferred FROM the responsibility of	SGS United Kingdom Limited, EU Notified Body Number 0120
Transferred TO the responsibility of Validity	SGS Fimko Ltd, EU Notified Body Number 0598
The certificates) listed on page 2 remain valid, on the existing terms of issue, the	
responsibility of the manufacturer to keep the Notified Body appraised of changes	
that could affect the certification remains, but notification must be made to SGS	
Fimko Ltd.	

Signature
Niunowon

Andrew Nicholson
Technical Manager

Section XI

Status monitoring, measurement and regulation

Chapter 42
Pulse and operating time meters 260
Chapter 43Liquid level control relays265
Chapter 44
Temperature controllers 271

Pulse and operating time meters

Product	Type	Programming	Multiplier／ divider	Installation	Display	Number of characters	Modbus	Reset	Voltage of counting input	Power supply	Page
CLI－01	pulse meter	－（menu）	－	for TH－35 rail	\bullet	8	－	－	$10 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	24 $\div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	261
CLI－02	pulse meter	－（menu）	－	for TH－35 rail	－	8	－	\bullet	$10 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	24 $\div 264 \mathrm{~V} \mathrm{AC/DC}$	262
CLI－11T 24 V	pulse meter	－	－	panel－mounted	－	8	－	－	$4 \div 30 \mathrm{VDC}$	internal battery	261
CLI－11T 230 V	pulse meter	－	－	panel－mounted	－	8	－	\bullet	$110 \div 240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	internal battery	261
CLG－03	operating time meter	－（menu）	not applicable	for TH－35 rail	\bullet	$6+1$	－	－	$10 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	24 $\div 264 \mathrm{~V} \mathrm{AC/DC}$	264
CLG－04	operating time meter	－	not applicable	for TH－35 rail	\bullet	6＋2	－	－	$100 \div 240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	internal battery	264
CLG－13T 24 V	operating time meter	－	not applicable	panel－mounted	\bullet	5＋1	－	－＊	$4 \div 30 \mathrm{VDC}$	internal battery	263
CLG－13T 230 V	operating time meter	－	not applicable	panel－mounted	－	$5+1$	－	－＊	$110 \div 240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	internal battery	263
CLG－14T	operating time meter	－	not applicable	panel－mounted	－	$6+2$	－	－	$110 \div 240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	internal battery	263
CLG－15T	electromechanical operating time meter	－	not applicable	panel－mounted	－	5＋2	－	－	230 V AC／DC	230 V AC／DC	263
MB－LI－4 Lo	4－channel pulse meter	－	－	for TH－35 rail	－	not applicable	－	－	$6 \div 30 \mathrm{VAC} / \mathrm{DC}$	$9 \div 30 \mathrm{VDC}$	262
MB－LI－4 Hi	4－channel pulse meter	\bullet	\bullet	for TH－35 rail	－	not applicable	－	－	$160 \div 265 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$9 \div 30 \mathrm{VDC}$	262
MB－LG－4 Lo	4－channel operating time meter	\bullet	not applicable	for TH－35 rail	－	not applicable	－	－	$6 \div 30 \mathrm{~V} \mathrm{AC/DC}$	$9 \div 30 \mathrm{VDC}$	299
MB－LG－4 Hi	4－channel operating time meter	－	not applicable	for TH－35 rail	－	not applicable	\bullet	－	$160 \div 265 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	$9 \div 30 \mathrm{VDC}$	299

＊The reset of indications is done by holding the button on the front of the device

Pulse meters

Purpose
Pulse meters are used to count AC/DC voltage signals generated by additional external devices in order to determine the number of work cycles performed in automation systems, for example, to control the number of press strokes, the number of rotations of the rotational device, the number of elements coming off the production line, etc.

CLI-11T
 panel-mounted

Functioning

The CLI-11T meter is a one-way meter for counting pulses in the range from 0 to 99999999 (8 digits).
It has a RESET resetting input to connect an external push-button for resetting the meter status.

power supply battery life counting input voltage CLI-11T 230 V	internal battery
CLI-11T 24 V	10 years*
maximum counting frequency	$110 \div 240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
display	$4 \div 30 \mathrm{VDC}$
indication accuracy	200 Hz
working temperature	8 characters $/ \mathrm{h}=6.7 \mathrm{~mm}$
terminal	$1 \% \pm 1 \mathrm{digit}$
tightening torque	$-10 \div 40^{\circ} \mathrm{C}$
dimensions	$1.5 \mathrm{~mm}^{2}$ screw terminals
mounting hole	0.2 Nm
ingress protection	$48 \times 24 \times 52 \mathrm{~mm}$
	$45 \times 23 \mathrm{~mm}$
* battery life depends on weather conditions	$\mathrm{IP20}$

CLI-01 programmable

Functioning
The CLI-01 meter is a programmable, multifunctional electronic meter for counting external pulses in the range from 0 to 99999999 999. The pulses are counted according to an individual program set by the user. When the threshold value is reached, the meter will perform an action configured according to the individual needs of the user.

supply voltage	$24 \div 264 \mathrm{~V} \mathrm{AC/DC}$
counting input	
voltage: low state	$0 \div 5 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
voltage: high state	$10 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
frequency for DC signal	$<5 \mathrm{kHz}$
frequency for AC signal	$<50 \mathrm{~Hz}$
resetting input	
voltage	$24 \div 264 \mathrm{~V} \mathrm{AC/DC}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	8 A
power consumption	1.5 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- A control panel that allows you to program and monitor the operation of the device;
- The input of the meter is designed to work with AC/DC signals with amplitude from 10 V to 264 V , the frequency up to 50 Hz for AC signals and 5 kHz for DC signals;
- The THRH parameter, adjustable from 1 to 99999999 999, which determines the limit number of pulses to be counted in each cycle of operation;
- External RESET resetting input;
- Relay output, which signals that the preset state of the meter has been reached (contact $1 \times \mathrm{NO} / \mathrm{NC} 8 \mathrm{~A}$);
- Local meter, reset by external reset input or by the RESET button;
- Global meter (TOTAL), counting all pulses (loop operation $0 \rightarrow$ $99999999 \rightarrow 0 \rightarrow \ldots$ or reset from the configuration menu of the meter);
- Digital filter, which allows limiting the maximum frequency of the counted pulses (to eliminate interference at the input of the meter);
- The memory of local and global status of the meter after a power outage;
- Program menu in one of 3 languages: Polish, English or Russian.

CLI-02

programmable
Functioning
The CLI-02 meter is a programmable, multifunctional electronic meter for counting external pulses in the range from 0 to 99999999999 . The pulses are counted according to an individual program set by the user. When the threshold value is reached, the meter will perform an action configured according to the individual needs of the user.

supply voltage	$24 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
counting input	
voltage: low state	$0 \div 5 \mathrm{VAC} / \mathrm{DC}$
voltage: high state	$10 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
frequency for DC signal	$<5 \mathrm{kHz}$
frequency for $A C$ signal	$<50 \mathrm{~Hz}$
resetting input	
voltage	$24 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	8 A
power consumption	1.5 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- A control panel that allows you to program and monitor the operation of the device;
- The input of the meter is designed to work with AC/DC signals with amplitude from 10 to 264 V , the frequency up to 50 Hz for AC signals and 5 kHz for DC signals;
- The THRESHOLD parameter, adjustable from 1 to 99999999 999, which determines the limit number of pulses to be counted in each cycle of operation;
- External RESET resetting input;
- Relay output, which signals that the preset state of the meter has been reached (contact $1 \times \mathrm{NO} / \mathrm{NC} 8 \mathrm{~A}$);
- Local meter, reset by external reset input or by the RESET button;
- Global meter (TOTAL), counting all pulses (loop operation $0 \rightarrow 99999999 \rightarrow 0 \rightarrow$. or reset from the configuration menu of the meter);
- Digital filter, which allows limiting the maximum frequency of the counted pulses (to eliminate interference at the input of the meter);
- The memory of local and global status of the meter after a power outage;
- Program menu in one of 3 languages: Polish, English or Russian;
- Countdown mode "backwards" from the preset value, with an indication of reaching zero (for example 9999 $\rightarrow 0$);
- Selection of the edge of the input pulse (rising edge or trailing edge) to which the meter will respond;
- The local meter can be reset automatically (loop operation) with the ability to set the selected relay action;
- Selection of relay action: a pulse of a set length of time; change of state ON \rightarrow OFF or OFF \rightarrow ON;
- Scaling of the values of the read pulses according to a preset multiplier or divider;
- Blocking access to the programming menu with a PIN code;
- Defining of the display backlight mode.

MB-LI-4Lo / MB-LI-4 hi

Functions

- 2 versions of the device:
- Lo for counting low-voltage signals;
- Hi for signals with 230 V mains voltage;
- 4 independent counters;
- Counter input suitable for AC/DC signals;
- Factor setting (floating-point value);
- Scaled value (number of pulses \times factor);
- Selection of the state trigger option 1: high or low voltage level;
- Selection of the input pulse edge (rising or trailing);
- Frequency filter, which allows limiting the maximum frequency of the counted pulses (to eliminate interference at the input of the counter);
- The memory of the meter status after a power failure;
- Digital input function.

Operating time meters

Purpose

Operating time meters are used to count the number of working hours in automatic production processes or the number of working hours of equipment which, due to safety requirements and efficiency of operation, has a certain service life, that is, an operating capacity which must not be exceeded (for example advanced propulsion units, specialized radioactive lamps, etc.).

CLG-13T panel-mounted, with the RESET button on the housing

Functioning

The CLG-13T meter is an electronic one-way meter designed for counting the hours of operation in the range from 0 to 99999.9 (5 digits +1 after the decimal point indicating the decimal parts of the unit). The time is counted when the control voltage is applied to terminals 1-2. The battery power supply allows you to read the meter status regardless of the presence of control voltage. It has a RESET resetting input for connecting an external push-button and a RESET button on the front of the device (with locking capabilities) to reset the meter status at any read value.

power supply	internal battery
battery life	10 years*
counting input voltage	
CLG-13T 230 V	$110 \div 240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
CLG-13T 24 V	$4 \div 30 \mathrm{~V} \mathrm{DC}$
display	6 characters $/ \mathrm{h}=6.7 \mathrm{~mm}$
indication accuracy	$0.1 \mathrm{~h}(6 \mathrm{~min})$.
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.2 Nm
dimensions	$48 \times 24 \times 52 \mathrm{~mm}$
mounting hole	$45 \times 23 \mathrm{~mm}$
ingress protection	IP 20

* battery life depends on weather conditions

CLG-14T

panel-mounted, with the RESET button on the housing

Functioning
The CLG-14T meter is an electronic one-way meter designed for counting the hours of operation in the range from 0 to 999999.59 (6 digits +2 after the decimal point indicating the decimal parts of the unit). The time is counted when the control voltage is applied to terminals 1-2. The battery power supply allows you to read the meter status regardless of the presence of control voltage. It has a RESET resetting input to connect an external push-button to reset the meter status at any read value.

power supply	internal battery
battery life	10 years*
counting input voltage	
CLG-14T 230 V	$110 \div 240 \mathrm{~V} \mathrm{AC/DC}$
CLG-14T 24 V	$5 \div 60 \mathrm{~V} \mathrm{AC/DC}$
display	8 characters $/ \mathrm{h}=6.7 \mathrm{~mm}$
indication accuracy	1 min .
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.2 Nm
dimensions	$48 \times 24 \times 52 \mathrm{~mm}$
mounting hole	$45 \times 23 \mathrm{~mm}$
ingress protection	IP20

CLG-15T electromechanical

Functioning

The CLG-15T meter is an electric meter with a barrel meter, designed for counting the hours of operation in the range from 0 to 99999.99 (5 digits + 2 after the decimal point indicating the decimal parts of the unit) ($0.01=36 \mathrm{sec}$). The time is counted when the motor is powered on. After reaching the maximum result, the counter starts counting from 0.

power supply	230 V AC
voltage tolerance	
indication accuracy	$0.01 \mathrm{~h}(36 \mathrm{~s})$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.2 Nm
dimensions	$48 \times 24 \times 60 \mathrm{~mm}$
mounting hole	$32 \times 22 \mathrm{~mm}$
ingress protection	IP20

CLG-03

programmable

Functioning

The CLG-03 is a programmable, multifunctional electronic meter that can count the operating hours of connected devices or systems in the range from 1 to 999999 999, which corresponds to a maximum operating period of more than 114 years. The operating time is counted after the control voltage is applied to terminals 7-8, according to the operating program set by the user. When the threshold value is reached, the meter will perform an action configured according to the individual needs of the user.

power supply	$24 \div 264 \mathrm{VAC} / \mathrm{DC}$
counting input	
voltage: low state	$0 \div 5 \mathrm{VAC} / \mathrm{DC}$
voltage: high state	$10 \div 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
frequency for DC signal	$<5 \mathrm{kHz}$
frequency for AC signal	$<50 \mathrm{~Hz}$
resetting input	
voltage	$24 \div 264 \mathrm{~V} \mathrm{AC/DC}$
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	8 A
power consumption	1.5 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- A control panel that allows you to program and monitor the operation of the device;
- Counting input for DC signal and AC signal (50 Hz);
- Counting up the time without a preset threshold value;
- The THRH parameter, adjustable from 1 to 99999999 999, which determines the limit number of operating hours to be counted in each cycle of operation;
- Countdown mode "backwards" from the preset value, with an indication of reaching zero (for example $9999 \rightarrow 0$);
- Counting the operating time with a high state (continuous voltage) at the counting input;
- Counting the operating time between two pulses applied to the counting input;
- Counting the time forwards up to a preset threshold value;
- External RESET resetting input;
- The local meter can be reset automatically (loop operation) with the ability to set the selected relay action;
- Relay output, which signals that the preset state of the meter has been reached (contact $1 \times \mathrm{NO} / \mathrm{NC} 8 \mathrm{~A}$);
- Selection of a relay action: a pulse of a set length of time;
- Change of state ON \rightarrow OFF or OFF \rightarrow ON;
- The memory of the meter status after a power failure;
- Defining of the display backlight mode.
- Program menu in one of 3 languages: Polish, English or Russian.

CLG-04

operating time meter

Purpose

The CLG-04 meter is an electronic operating time meter that allows counting up to 999999.59 hours in 1 min steps. (hours: 6 digits, minutes: 2 digits). The time is counted when the control voltage is applied to terminals $5-6$. The battery power supply allows you to read the meter status regardless of the presence of control voltage. The meter is designed for mounting on a DIN rail. No RESET function to reset the meter indication.

power supply	internal battery (CR14335 soldered)
battery life	(depending on the operating conditions)
voltage of counting input	$100 \div 240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
display	$6+2$ characters (backlit during time counting)
indication accuracy	1 min .
power consumption	1.5 W
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	2 modules (36 mm)
mounting	for TH-35 rail
ingress protection	IP20

Purpose

Liquid level control relays are used to detect the presence of electrically conductive liquids at the level of installed flood probes.

Product	Number of levels	Number of probes	Contact configuration	Contact separation	Sensitivity adjustment	Page
PZ-828	1	1	1×NO/NC	-	-	265
PZ-828 RC	1	1	$1 \times$ NO/NC	-	-	265
PZ-829	2	3	$2 \times \mathrm{NO} / \mathrm{NC}$	-	-	266
PZ-829 RC	2	3	$2 \times \mathrm{NO} / \mathrm{NC}$	-	-	266
PZ-831 RC	3	4	$3 \times \mathrm{NO}$	-	-	268
PZ-832 RC	4 (2+2 alarm)	5	$4 \times \mathrm{NO} / \mathrm{NC}$	-	-	267

Single-state

PZ-828 +1 PZ probe / PZ-828 RC with sensitivity adjustment + 1 PZ probe

Functioning

The PZ-828 is a liquid level control relay that operates on the principle of detecting the presence or absence of conductive liquid.
The relay can operate in two modes:

- emptying the tank (diagram 1): the pump is switched on when the sensor is flooded with liquid and switched off when the sensor loses contact with the liquid;
- filling the tank (diagram 2): the pump is switched on when the sensor loses contact with the liquid and switched off when the sensor is flooded with liquid;
PZ-828 RC additionally enables adjustment of the sensitivity level of the relay (in the range of $1 \div 100 \mathrm{k} \Omega$), thanks to which the relay can be used to detect liquids with different degrees of specific resistance.
Examples of liquid resistances are shown in the table on page 266.

Tank filling

Tank emptying

Bi-state

PZ-829 + 3 PZ2 probes/PZ-829 RC with sensitivity adjustment + 3 PZ2 probes

Functioning

The PZ-829 is a liquid level control relay designed to work in systems where it is required to maintain the liquid (carrying current) level between a set minimum and maximum value.
The relay can operate in two modes:

- emptying the tank (diagram 1). As soon as the liquid level reaches the set MAX level, the pump is switched on and it will continue to operate until the liquid level falls below MIN.
- filling the tank (diagram 2). As soon as the liquid level falls below the preset MIN level, the pump is switched on and it will continue to operate until the liquid level reaches the MAX value.
PZ-829 RC additionally enables adjustment of the sensitivity level of the relay (in the range of $1 \div 100 \mathrm{k} \Omega$), thanks to which the relay can be used to detect liquids with different degrees of specific resistance.
Examples of liquid resistances are shown in the table below.

power supply	230 V AC
maximum load current (AC-1)	2×16 A
contact	separated $2 \times \mathrm{NO} / \mathrm{NC}$
sensitivity (adjustable for PZ-829 RC)) $1 \div 100 \mathrm{k} \Omega$
contacts switching delay	
for MIN point	$1 \div 2 \mathrm{~s}$
for MAX point	<5 s
output voltage measurement	$<6 \mathrm{~V}$
power indication	green LED
work status indication	$2 \times$ red LED
power consumption	1.1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
flooding probe type	$3 \times P Z 2$
separation of the measuring probes	galvanic (transformer)
ingress protection	IP20

Tank filling

Tank emptying

Liquid resistance table

Type of liquid	Specific resistance
Drinking water	$5 \div 10 \mathrm{k} \Omega$
Well water	$2 \div 5 \mathrm{k} \Omega$
River water	$2 \div 15 \mathrm{k} \Omega$
Rainwater	$15 \div 25 \mathrm{k} \Omega$
Sewage water	$0.5 \div 2 \mathrm{k} \Omega$
Sea water	$0.03 \mathrm{k} \Omega$
Natural hardness water	$5 \mathrm{k} \Omega$
Chlorinated water	$5 \mathrm{k} \Omega$
Distilled water	no detection

Bi-state (with MIN and MAX alarm states)

PZ-832RC + 5 PZ2 probes

Functioning

The PZ-832 is a liquid level control relay designed to work in systems where it is required to maintain the liquid (carrying current) level between a set minimum and maximum value.
The relay can operate in two modes:

- emptying the tank (diagram 1). As soon as the liquid level reaches the set MAX level, the pump is switched on and it will continue to operate until the liquid level falls below MIN.
- filling the tank (diagram 2). As soon as the liquid level falls below the preset MIN level, the pump is switched on and it will continue to operate until the liquid level reaches the MAX value.
The PZ-832 RC relay is additionally equipped with 2 alarm low and alarm high-level probes. This doubles the protection for minimum and maximum levels and protects the installation from dry-running or overfilling.
The PZ-832 RC additionally enables adjustment of the sensitivity level of the relay (in the range of $1 \div 100 \mathrm{k} \Omega$), thanks to which the relay can be used to detect liquids with different degrees of specific resistance.
Examples of liquid resistances are shown in the table below.

power supply	230 V AC
contact	separated $4 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	
MIN and MAX contacts	16 A
ALMIN and ALMAX contacts	8 A
sensitivity (adjustable)	$1 \div 100 \mathrm{k} \Omega$
activation delay	$1 \div 2 \mathrm{~s}$
output voltage measurement	<6 V
power indication	green LED
working indication	yellow LED
status indication MIN and MAX	$2 \times$ green LED
alarm state indication	$2 \times$ red LED
power consumption	1.1 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	5 modules (85 mm)
mounting	for TH-35 rail
flooding probe type	$5 \times P Z 2$
separation of the measuring probes	galvanic (transformer)
ingress protection	IP20

Tank filling

Tank emptying

Liquid resistance table

Type of liquid	Specific resistance
Drinking water	$5 \div 10 \mathrm{k} \Omega$
Well water	$2 \div 5 \mathrm{k} \Omega$
River water	$2 \div 15 \mathrm{k} \Omega$
Rainwater	$15 \div 25 \mathrm{k} \Omega$
Sewage water	$0.5 \div 2 \mathrm{k} \Omega$
Sea water	$0.03 \mathrm{k} \Omega$
Natural hardness water	$5 \mathrm{k} \Omega$
Chlorinated water	$5 \mathrm{k} \Omega$
Distilled water	no detection

Tri-state

PZ-831RC + 4 PZ2 probes

Functioning

PZ-831 RC is a liquid level control relay, which, thanks to being equipped with 4 PZ2-type flooding probes, enables the detection and independent monitoring of reaching 3 preset liquid levels. The relay can also be used in a cascade pump switching system, where exceeding the next liquid level indicates the need to switch on an additional pump.
PZ-831 RC enables adjustment of the sensitivity level of the relay (in the range of $1 \div 100 \mathrm{k} \Omega$), thanks to which the relay can be used to detect liquids with different degrees of specific resistance.
Examples of liquid resistances are shown in the table below.

Liquid resistance table

Type of liquid	Specific resistance
Drinking water	$5 \div 10 \mathrm{k} \Omega$
Well water	$2 \div 5 \mathrm{k} \Omega$
River water	$2 \div 15 \mathrm{k} \Omega$
Rainwater	$15 \div 25 \mathrm{k} \Omega$
Sewage water	$0.5 \div 2 \mathrm{k} \Omega$
Sea water	$0.03 \mathrm{k} \Omega$
Natural hardness water	$5 \mathrm{k} \Omega$
Chlorinated water	$5 \mathrm{k} \Omega$
Distilled water	no detection

Dedicated probes for liquid control relays

PZ probe for PZ-828, PZ-828 RC

Connection of the probe

The design of the probe allows it to be mounted on a flat horizontal ground such as on the floor in a room with hydro-valves, flow pipes or in the laundry room, which allows quick detection of a failure and flooding of the room with liquid, with simultaneous switching off of electrical circuits or activation of sound or light signaling (alarm). The probe cable can be extended to 100 m .
Up to 10 probes (in series or parallel) can be connected to input 5-6:

- in series - for a dependent fluid level control system at multiple points, all connected sensors must be shorted simultaneously for the relay to trip;
- in parallel - for an alternative fluid level control system at multiple points, at least one of the connected sensors must be shorted. With a serial connection, the sensitivity of the sensors decreases (conductivity decreases).

Serial connection

Parallel connection

PZ2 probe for PZ-829, PZ-829 RC, PZ-831 RC, PZ-832 RC

	maximum liquid temperature	$85^{\circ} \mathrm{C}$
	flood sensor	stainless steel electrode +plastic casing for the electrode +PG9 gland
\square	probe dimensions	$\varnothing 15,1=9.5 \mathrm{~cm}$
	probe voltage probe current	<0.13 ma
	connecting cable	for example, DY $1 \mathrm{~mm}^{2}$
	length of the connecting cable	

Automatic Anti-flood System (ASP)

Purpose
The Automatic Anti-Flood System (AFS) is an autonomous system to prevent flooding of single and multi-family residential buildings. It is used to comprehensively protect property from the effects of flooding.

Functions

- Detection of leaks and spills;
- Cutting off the water supply to the facility;
- Notifying the user about the situation;
- The solenoid valve coil is not permanently powered (power supply at switchover);
- Own emergency power supply;
- The bistable solenoid valve remains closed after the power supply is cut - It can be integrated with alarm and fire protection systems. off;

System elements

- Distribution box containing: central controller SAM-01, protection of electrical circuits and a battery to support the operation of the system at short power outages.
- Solenoid valve size 1", 2", 3/4" or 5/4" - 1 piece
- SON-K flood probe for boiler room - 1 piece
- SON-M flood probe for living quarters - 2 pieces

SAM-1
multifunctional controller for AFS system management

Solenoid valve to shut off the water supply to the object (1", 2", 3/4" or 5/4")

SON-K
Flood probe for use in the boiler room

SON-M
Flood probe for use in living quarters

Temperature controllers

Purpose

Temperature controllers are used to controlling heating or ventilation devices to maintain a constant ambient temperature.

Product	Type	Application	Settings	$\begin{gathered} \text { Built-in } \\ \text { clock } \\ \text { programmable } \end{gathered}$	Actuator element	Maximum load courrent AC-1:	Contact configuration	Contact separation	Range of adjustment of temperature	Hysteresis	$\begin{gathered} \text { Type } \\ \text { of probe } \end{gathered}$	Probe	Page
CRT-04	digital, for DIN rail	with the weekly programmer	display, keyboard	-	relay	16 A	1×NO/NC	-	$0 \div 60^{\circ} \mathrm{C}$	$0 \div 10^{\circ} \mathrm{C}$	DS1820	-	274
CRT-05	digital, for DIN rail	2-function (heating, cooling)	display, keyboard	-	relay	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$-100 \div 400^{\circ} \mathrm{C}$	$0 \div 10^{\circ} \mathrm{C}$	PT100	-	275
CRT-06	digital, two-channel, For DIN rail	10-function	display, keyboard	-	relay	16 A	2×NO	-	$-100 \div 400^{\circ} \mathrm{C}$	$0 \div 10^{\circ} \mathrm{C}$	PT100	-	275
CRT-15T	digital PID, panel-mounted	PID control	display, keyboard	-	relay	3 A	1×NO/NC	-	$0 \div 400^{\circ} \mathrm{C}$	-	PT100	-	277
RT-820	analog, for DIN rail	general	potentiometers	-	relay	16 A	1×NO/NC	-	$4 \div 30^{\circ} \mathrm{C}$	$0.5 \div 3^{\circ} \mathrm{C}$	KTY81-210	-	272
RT-821	analog, for DIN rail	anti-icing systems	potentiometers	-	relay	16 A	1×NO/NC	-	$-4 \div 5{ }^{\circ} \mathrm{C}$	$0.5 \div 3{ }^{\circ} \mathrm{C}$	KTY81-210	-	272
RT-822	analog, for DIN rail	general	potentiometers	-	relay	16 A	$1 \times \mathrm{NO} / \mathrm{NC}$	-	$30 \div 60^{\circ} \mathrm{C}$	$0.5 \div 3{ }^{\circ} \mathrm{C}$	KTY81-210	-	272
RT-823	analog, for DIN rail	general	potentiometers	-	relay	16 A	1×NO/NC	-	60*95 ${ }^{\circ} \mathrm{C}$	$0.5 \div 3{ }^{\circ} \mathrm{C}$	KTY81-210	-	272
RT-824	analog, wall-mounted	wall-mounted, mechanical	potentiometer	-	relay	16 A	1×NO	-	$5 \div 35^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$	NTC	-	273
RT-825	digital, wall-mounted	wall-mounted, with the weekly programmer and display	display, keyboard	-	relay	16 A	1×NO	-	$5 \div 60^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	NTC	-	273
RT-826	digital, for DIN rail	digital, with display	display, keyboard	-	relay	16 A	1×NO	-	$-25 \div 130^{\circ} \mathrm{C}$	$1 \div 30^{\circ} \mathrm{C}$	KTY81-210	-	272
RT-833	digital, with control of the fan speed, for DIN rail	with control of the fan speed	potentiometers	-	transistor +relay	$\begin{aligned} & \text { fan } \\ & 6 \mathrm{ADC}, \\ & \text { relay } \\ & 10 \mathrm{~A} \end{aligned}$	1×NO/NC	-	25:60 ${ }^{\circ} \mathrm{C}$	$5 \div 30^{\circ} \mathrm{C}$	KTY81-210	-	277
CR-810	analog, for protection of electrical equipment, such as engines for DIN rail	cooperation with PTC thermistors	not	-	relay	16 A	1×NO/NC	-	not applicable		PTC	-	277

Functioning
Until the desired ambient temperature is reached, the relay contact is in position 2-1 and the heating device is switched on. When the set temperature is reached, the contact is switched to position 2-8 and the heater is switched off or the ventilation unit is switched on. Temperature drop by the value of hysteresis will switch the heating device on again (contacts 2-1 closed) until the preset temperature is reached.

power supply	230 V AC
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
temperature adjustment range	
RT-820	$4 \div 30^{\circ} \mathrm{C}$
RT-821	$-4 \div 5^{\circ} \mathrm{C}$
RT-822	$30 \div 60^{\circ} \mathrm{C}$
RT-823	$60 \div 95^{\circ} \mathrm{C}$
hysteresis (adjustable)	$0.5 \div 3^{\circ} \mathrm{C}$
setting accuracy	$1^{\circ} \mathrm{C}$
measurement accuracy	$\pm 1^{\circ} \mathrm{C}$
temperature sensor type	RT/RT2
power indication	green LED
work status indication	red LED
power consumption	1.1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

(!) The parameters of the dedicated RT or RT2 probe can be found in the table on page 274.

RT-826 digital, temperature range $-25 \div 130^{\circ} \mathrm{C}$ (probe not included)

power supply	230 V AC
maximum load current (AC-1)	16 A
contact	$1 \times \mathrm{NO}$
temperature adjustment range	$-25 \div 130^{\circ} \mathrm{C}$
hysteresis (adjustable)	$1 \div 30^{\circ} \mathrm{C}$
setting accuracy	$1^{\circ} \mathrm{C}$
measurement accuracy	$\pm 1^{\circ} \mathrm{C}$
alarm indication	
audible	
volume	80 dB
frequency	2.4 kHz
control output	
type	open collector
maximum voltage	24 V
maximum load current	30 mA
display	3-digit LED $5 \times 9 \mathrm{~mm}$
contact signalling activation	red LED
temperature sensor type	RT/RT2
power consumption	1.1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	2 modules (35 mm)
mounting	for TH-35 rail
ingress protection	IP20

Controller functions

- Operating modes: heating or cooling;
- Indication correction $\pm 9^{\circ} \mathrm{C}$;
- Display of the currently measured temperature value;
- Audible and visual alarm when the temperature exceeds the set value by $5^{\circ} \mathrm{C}$;
- Cooperation with RT or RT2 probes.

[^15]

power supply	230 V AC
maximum load current (AC-1)	16 A
contact	$1 \times \mathrm{NO}$
temperature adjustment range	$5 \div 35^{\circ} \mathrm{C}$
hysteresis	$3^{\circ} \mathrm{C}$
setting accuracy	$1^{\circ} \mathrm{C}$
measurement accuracy	$\pm 1^{\circ} \mathrm{C}$
internal temperature sensor	NTC
power consumption	0.8 W
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.2 Nm
dimensions	
front	$83.5 \times 83.5 \mathrm{~mm}$; depth: 22 mm
back	¢50; depth: 27.5 mm
mounting	in flush-mounted box $\varnothing 60$
ingress protection	IP20

Controller functions

- One desired temperature can be programmed;
- A knob on the front panel for setting the desired temperature;
- Indication of heating system activation;
- 2 temperature sensors: internal and external;
- 3 modes of the controller operation: operation with the internal temperature sensor, operation with the external temperature sensor, operation with 2 temperature sensors;
- In the mode of operation with the internal temperature sensor, in case of its failure, the controller will switch to the so-called "safe automatic model" mode in an effort to maintain the set temperature;
- Automatic switching to the internal sensor mode in case of external sensor failure;
- In the mode of operation with 2 temperature sensors, the external sensor is a limiter and, regardless of the set temperature on the knob, does not allow the temperature to exceed $27^{\circ} \mathrm{C}$;
- In the mode of operation with 2 temperature sensors, in case of failure of both temperature sensors, the controller will switch to the so-called "safe automatic model". When operating in intermittent mode, the controller tries to keep the temperature at 80% of the set value.

The parameters of the dedicated RT45 probe can be found in the table on page 274

RT-825

power supply	230 V AC
maximum load current (AC-1)	16 A
contact	$1 \times \mathrm{NO}$
temperature adjustment range	$5 \div 60^{\circ} \mathrm{C}$
anti-freeze temperature adjustment range	$0 \div 10^{\circ} \mathrm{C}$
hysteresis	$1^{\circ} \mathrm{C}$
setting accuracy	$1^{\circ} \mathrm{C}$
measurement accuracy	$\pm 1^{\circ} \mathrm{C}$
reading accuracy	$0.1^{\circ} \mathrm{C}$
backup time clock operation	$<1 \mathrm{~h}$
internal temperature sensor	NTC
power consumption	0.8 W
terminal	
tightening torque	$1.5 \mathrm{~mm}{ }^{2}$ screw terminals
dimensions	0.2 Nm
front	
back	
mounting	
ingress protection	$83.5 \times 83.5 \mathrm{~mm} ;$ depth: 22 mm

Controller functions

- A control panel that allows you to program and monitor the operation of the device;
- Maintaining the set temperature according to the programmed hours and days of the week;
- 4 intervals with the desired temperature per day can be programmed;
- 12 program entries: 4 with the desired temperature for working days (Mon-Fri); 4 with the desired temperature for Saturday (Sat) and 4 with the desired temperature for Sunday (Sun);
- Quick manual correction of the currently maintained temperature;
- Adjustable hysteresis;
- 2 temperature sensors: internal and external;
- 3 modes of the controller operation: operation with the internal temperature sensor, operation with the external temperature sensor, operation with 2 temperature sensors;
- In the mode of operation with 2 temperature sensors, the external sensor is a limiter h a temperature set in the range of $15 \div 50^{\circ} \mathrm{C}$.

The parameters of the dedicated RT45 probe can be found in the table on page 274.

Digital, programmable

Purpose

CRTs are programmable, multifunctional electronic controllers, designed for control of heating or cooling devices, in order to maintain constant room temperature, control the ambient temperature and the temperature of substances in industrial conditions with the ability to control technological processes.

With a programmable control timer

CRT-04

+ RT4 probe, temperature range $0 \div 99^{\circ} \mathrm{C}$

Functioning

The operating time and the desired temperature are implemented according to an individual program set by the user. CRTs have a calendar and a real-time clock, allowing the controlled device to be switched on and off at programmed times in cycles: daily, weekly, working days (Mon-Fri) or weekend (Sat, Sun).

power supply	230 V AC
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
battery life	3 years*
temperature adjustment range	$0 \div 99^{\circ} \mathrm{C}$
hysteresis (adjustable)	$0 \div 10^{\circ} \mathrm{C}$
setting accuracy	$0.1^{\circ} \mathrm{C}$
temperature correction	$\pm 5^{\circ} \mathrm{C}$
temperature sensor type	$\mathrm{RT4}$
switch-on time lighting (adjustable)	$1 \div 15 \mathrm{~min}$.
power consumption	1.5 W
working temperature	$-20 \div 40^{\circ} \mathrm{C}$
terminal	
	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
tightening torque	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
dimensions	0.5 Nm
mounting	3 modules $(52.5 \mathrm{~mm})$
ingress protection	for TH-35 rail

* battery life depends on weather conditions and frequency of mains failure

Controller functions

- A control panel that allows you to program and monitor the operation of the device;
- Heating and Cooling modes of operation - maintaining the set temperature according to the programmed hours and days of the week;
- Continuous mode of operation - maintaining one preset temperature, executed without program entries;
- Measurement mode of operation - an indication of the current temperature without controlling the connected device;
- 50 program entries:
- Interval - the ability to program up to 8 desired temperatures (3 in the so-called My1, My2, My3 modes, and additionally 5 in the following modes: Morning, Work, Dinner, Day, Night, for the daily time intervals related to the lifestyle of the household members;
- Delay - programmable delay time when passing through the temperature limit values;
- Correction - elimination of the error of temperature reading in relation to the reference thermometer;
- Sensor - visual indication of the temperature sensor failure;
- DST - automatic time change with the possibility of program switching to manual mode;
- Light - definition of the display backlight mode;
- Language: program menu in one of 3 languages: Polish, English or Russian.

The parameters of the dedicated RT4 probe can be found in the table below. The probe is included.

Dedicated probes for temperature controllers

Product	Sensor of temperature	Range of measurement	Dimensions of the sensor	Insulation of the sensor	Type of cable	Purpose
K400	K400	$0 \div 400^{\circ} \mathrm{C}$	M6 thread; $\mathrm{h}=15 \mathrm{~mm}$	steel	$\text { PC } 2 \times 0,34 \mathrm{~mm}^{2} ; \mathrm{l}=1 \mathrm{~m}$ (in metal braid)	CRT-15T
RT	KTY 81-210	$-50 \div 130^{\circ} \mathrm{C}$	ø5; h= 20 mm	heat shrink tubing	OMY $2 \times 0,34 \mathrm{~mm}^{2} ; 1=2,5 \mathrm{~m}$	AT-11, AT-1U, AT-1I-KT, AT-1U-KT, AT-2I, AT-2U, RT-820, RT-821, RT-822, RT-826, RT-833
RT2	KTY 81-210	$-50 \div 130^{\circ} \mathrm{C}$	ø8; $\mathrm{h}=40 \mathrm{~mm}$	metal tubing	SIHF $2 \times 0.5 \mathrm{~mm}^{2} ; \mathrm{l}=2,5 \mathrm{~m}$	AT-1I, AT-1U, AT-11-KT, AT-1U-KT, AT-2I, AT-2U, RT-823, RT-826
RT4	DS18S20	$-55 \div 125^{\circ} \mathrm{C}$	ø5; $\mathrm{h}=30 \mathrm{~mm}$	heat shrink tubing	UYY $3 \times 0,34 \mathrm{~mm}^{2} ; 1=2,5 \mathrm{~m}$	AT-1I-DS, AT-1U-DS, CRT-04, MB-DS-2, MB-DS-10, MB-DS-30
RT45	NTC	-	ø7; $\mathrm{h}=25 \mathrm{~mm}$	PC sleeve	PC $2 \times 0,34 \mathrm{~mm}^{2} ; 1=3 \mathrm{~m}$	RT-824, RT-825
RT56	PT100	$-100 \div 400^{\circ} \mathrm{C}$	ø4; $\mathrm{h}=85 \mathrm{~mm}$	steel tubing	$\begin{aligned} & \text { PC } 3 \times 0,34 \mathrm{~mm}^{2} \text {; } I=1.5 \mathrm{~m} \\ & \text { (in metal braid) } \end{aligned}$	AT-1I-PT, AT-1U-PT, AT-3I, CRT-05, CRT-06, MB-PT-100

power supply	230 V AC
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
temperature adjustment range	$-100 \div 400^{\circ} \mathrm{C}$
hysteresis (adjustable)	$0 \div 10^{\circ} \mathrm{C}$
setting accuracy	$1^{\circ} \mathrm{C}$
indication correction	$\pm 20^{\circ} \mathrm{C}$
temperature sensor type	RT56 (PT100)
power consumption	1.5 W
working temperature	$-20 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord) $4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
tightening torque	0.5 Nm
dimensions	3 modules (52.5 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- A control panel that allows you to program and monitor the operation of the device;
- 2 modes of operation: Heating or Cooling;
- 2 adjustable hysteresis; Lower and Upper;
- Automatic mode: working with one (selected) function;
- Manual mode: closing or opening the contact permanently without temperature measurement;
- Correction - elimination of the error of temperature reading in relation to the reference thermometer;
- Error - visual indication of the exceeding of the range, temperature sensor failure or over-speed of temperature rising or falling;
- Blocking access to the programming menu with a PIN code;
- Light - definition of the display backlight mode;
- Language: program menu in one of 3 languages: Polish, English or Russian.

The parameters of the dedicated RT56 probe can be found in the table on page 274.

CRT-06

10 -function, temperature range $-100 \div 400^{\circ} \mathrm{C}$ (probe not included)

power supply	230 V AC
maximum load current (AC-1)	$2 \times 16 \mathrm{~A}$
contact	separated $2 \times \mathrm{NO}$
temperature adjustment range	$-100 \div 400^{\circ} \mathrm{C}$
hysteresis (adjustable)	$0 \div 100^{\circ} \mathrm{C}$
setting accuracy	$1{ }^{\circ} \mathrm{C}$
indication correction	$\pm 20^{\circ} \mathrm{C}$
switch-on time lighting (adjustable)	$0 \div 45 \mathrm{~min}$.
sampling rate (adjustable)	$1 \div 120$ samples
	11 min.
temperature sensor type	RT56 (PT100)
power consumption	1.5 W
working temperature	$-20 \div 40^{\circ} \mathrm{C}$
terminal	
tightening torque	$2.5 \mathrm{~mm}^{2}$ screw terminals (cord)
dimensions	$4.0 \mathrm{~mm}^{2}$ screw terminals (wire)
mounting	0.5 Nm
ingress protection	3 modules $(52.5 \mathrm{~mm})$

Functions

- A control panel that allows you to program and monitor the operation of the device;
- 10 modes of operation;
- 2 independent temperature sensors, setting of two independent temperature values;
- 2 NO contacts assigned to temperature sensors;
- 2 hysteresis value settings for each sensor separately;
- Automatic mode: operating with one (selected) function;
- Manual mode: closing or opening the contact permanently without temperature measurement; separately for P1 contact and P2 contact;
- Delay - programmable delay time when passing through the temperature limit values;
- Correction - elimination of the error of temperature reading in relation to the reference thermometer;
- Error - visual indication of the exceeding of the range, temperature sensor failure or over-speed of temperature rising or falling;
- Memory function for highest and lowest recorded temperature independently for sensors C1 and C2;
- Blocking access to the programming menu with a PIN code;
- Light - definition of the display backlight mode;
- Language: program menu in one of 3 languages: Polish, English or Russian.

Heating mode
P1 and P2 contacts dependent on the C1 sensor

- 1 sensor: C1
- parallel operation of contacts P1 and P2
- 1 temperature setting: T1
- 1 hysteresis setting: H1 (upper and lower threshold)

Cooling mode

P1 and P2 contacts dependent on the C1 sensor.
-1 sensor: C1

- parallel operation of contacts P1 and P2
- 1 temperature setting: T1
-1 hysteresis setting: H1 (upper and lower threshold)

Heating/Cooling mode

P1 and P2 contacts dependent on the C1 sensor.

- 1 sensor: C1
- alternating contact operation: P1 - cooling; P2 - heating
-1 temperature setting: T1
-1 hysteresis setting: H1 (upper and lower threshold)

Heating mode for P 1 and P 2 contacts.
P1 contact dependent on the C1 sensor
P2 contact dependent on the C2 sensor
-2 sensors: C1 and C2

- independent contact operation: P1 - heating; P2 - heating;
- 2 temperature setting: T1 and T2
- 2 hysteresis setting: H1 - upper and lower threshold for T1; H2 - the upper and lower threshold for T2

Cooling mode for P1 and P2 contacts.
P1 contact dependent on the C1 sensor.
P2 contact dependent on the C2 sensor.

- 2 sensors: C1 and C2
- independent contact operation: P1 - cooling; P2 - cooling
-2 temperature setting: T1 and T2
- 2 hysteresis setting: H1 - upper and lower threshold for T1; H2 - the upper and lower threshold for T2

Heating mode for P1 and P2 contacts.
P1 contact dependent on the C1 sensor;
P2 contact dependent on the C2 and C1 sensor (switched on only if the P1 contact is closed).
-2 sensors: C1 and C2

- dependent contact operation: P1 - heating; P2 - heating with P1 switched on
-2 temperature setting: T1 and T2
-2 hysteresis setting: H1 - upper and lower threshold for T1; H2 - the upper and lower threshold for T2

Differential mode.

P1 contact is switched on at a temperature difference greater than the setting.
P2 contact switches on in the opposite situation to the P1 contact - at a difference less than the setting.

- 2 sensors: C1 and C2
- alternating contact operation: P1 - heating; P2 - heating with P1 switched on
-2 temperature setting: T1 and T2
- no H 1 and H 2 hysteresis setting

Window mode.

P1 and P2 contacts are switched on when the temperature of the C1 sensor is between set values of T1 and T2 temperatures.

- 1 sensor: C1
- parallel contact operation: P1 and P2
- 2 temperature setting: T1 and T2
- no hysteresis setting: H 1 and H 2

Window mode.

P1 and P2 contacts are switched on when the temperature of the C1 sensor is between set values of T1 and T2 temperatures.
-2 sensors: C1 and C2

- parallel contact operation: P1 and P2
-2 temperature setting: T1 and T2
- no H 1 and H 2 hysteresis setting

Window mode independent for P1 and P2 contacts.

$P 1$ and P2 contacts are switched on when the temperature of the C1 sensor is between set values of T1 and T2 temperatures.
$P 2$ and $P 2$ contacts are switched on when the temperature of the $C 2$ sensor is between set values of T3 and T4 temperatures.
-2 sensors: C1 and C2;

- independent contact operation: P1 and P2;
-4 temperature setting: T1 and T2 for P1 contact, T3 and T4 for P1 contact;
- no H 1 and H 2 hysteresis setting.

power supply	$100 \div 240 \mathrm{~V} \mathrm{AC}$
controller output	
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum load current (AC-1)	3 A
control	PWM
alarm output	
contact	separated $1 \times$ NO
maximum load current (AC-1)	1 A
temperature adjustment range	$0 \div 400^{\circ} \mathrm{C}$
PID setting	
proportional part P	$0 \div 100$
integral part I	0 $\div 255$
derivative part D	0 $\div 255$
setting accuracy	$0.5^{\circ} \mathrm{C}(\pm 1$ digit)
indication correction	$\pm 15^{\circ} \mathrm{C}$
power consumption	1 W
working temperature	$-10 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$48 \times 48 \times 86 \mathrm{~mm}$
mounting hole	$45 \times 45 \mathrm{~mm}$
ingress protection	IP20

Controller functions

- A control panel that allows you to program and monitor the operation of the device;
- PID controller (proportional-integral-differentiating) + automatic tuning of the PID regulator;
- Adjustable alarm temperature threshold;
- Display of the set and current temperature;
- Output $1 \times$ NO/NC contact;
- Additional ALARM output contact $1 \times$ NO.The parameters of the dedicated K400 probe can be found in the table on page 264. The probe is included.

RT-833

with fan speed control (sensor not included)

Purpose

The controller is designed for direct control of $12 / 24 \mathrm{~V} D C$ fans in control cabinets (or similar installations) as a function of temperature.

power supply	$12 \div 24 \mathrm{VDC}$
control output	
maximum load current (DC-1)	6 A
control	PWM
alarm output	
contact	separated $1 \times$ NC
maximum load current (AC-1)	10 A
temperature adjustment range	
Tmin	$25 \div 60^{\circ} \mathrm{C}$
ΔT	$5 \div 30^{\circ} \mathrm{C}$
measurement accuracy	$\pm 1^{\circ} \mathrm{C}$
start speed setting	0 $\div 80 \%$
temperature sensor type	RT/RT2
power indication	green LED
work status indication	red LED
power consumption	
standby	0.05 W
on	0.6 W
working temperature	$-15 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functioning

If the temperature is higher than the setpoint Tmin value, the fan will start and its speed will be proportional to the measured temperature and the controller settings:

- for Tmin temperature, the fan speed will be equal to the set minimum speed;
- for $\operatorname{Tmin}+\Delta T$ temperature, the fan speed is 100%;
- for temperatures in the Tmin <-> Tmin $+\Delta T$ range, the speed will be proportionally represented in the range from the set minimum to 100% speed. The controller has a relay output for signaling too high temperature or damage (no power supply) to the controller. During normal operation, the contact is closed (position 11-12). If the measured temperature is higher than the maximum value ($\operatorname{Tmin}+\Delta T$) for 3 minutes, the contact will be opened (position 10-11). If the controller fails or is not powered, contacts 10-11 can be used to signal an error.
(!)
The parameters of the dedicated RT probe can be found in the table on page 274.

Resistance relay

CR-810 DU0 for use with PTC thermistor temperature sensors (probe not included)

Purpose

Resistance (thermal) relay is used to protect electrical equipment against unwanted temperature rise using PTC thermistor sensors connected in series in the amount of 1-6 pieces.

Functioning

Correct operation (closed contacts 11-12) is indicated by the green LED U (correct supply voltage, correct temperature of the controlled device, a properly functioning circuit of connected PTC sensors). An increase in the temperature of at least one of the sensors above the nominal value causes its resistance to increase above 3000Ω. The relay is tripped (opening of contacts 11-12). The system will be switched on automatically if the resistance of the PTC sensor loop drops below 1800Ω (a drop of the temperature of the controlled device). The actuator relay contact will also be opened when the loop resistance decreases to 70Ω, for example when the PTC sensor wires are short-circuited or the relay supply voltage is switched off.

power supply	$230 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
contact opening resistance	$\mathrm{R}>3000 \Omega . \mathrm{R}<70 \Omega$
contact closing resistance	$110 \Omega<\mathrm{R}<1800 \Omega$
cold state resistance of sensor loop	$\mathrm{R}=1500 \Omega$
power indication	green LED
damage indication	$2 \times$ red LED
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$\mathrm{IP2O}$

230 V version
24 V version

Section XII

Measuring transducers and signal converters

Chapter 45
Auxiliary elements of automation systems 280
Chapter 46
Measuring transducers 287
Chapter 47
Contactors and relays 305
Chapter 48
Measuring current transformers 308

Auxiliary elements of automation systems

Control signal separators

Purpose

Control signal separators are used for separation in automation systems with separate control subgroups and central control.
The control signal is passed in one direction. In the opposite direction, the signal is blocked.

SEP-01

control signal separator, for DIN rail

maximum voltage	250 V
maximum load current (AC-1)	1 A
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

SEP-02

control signal separator, for flush-mounted box

SEP-03 USB

USB line amplifier/separator
Purpose
SEP-03 USB is used for galvanic separation of devices connected by USB cable. It provides surge protection for HOST devices such as personal computers from external devices connected directly to power networks, industrial power supply or measuring high voltage systems. When an external power supply is connected, it serves as an amplifier of the transmitted signal and increases the current capacity up to 1 A for a system of connected devices, it can also work without external power supply.

power supply	
via a USB port (input)	5 V DC
external Uopt	$12 \div 30 \mathrm{VDC}$
maximum load current (output)	
for USB power supply	0.4 A
for Uopt power supply	1 A
USB standard	1.1/2.0
speed	Low speed 1.5 Mbps/Full speed 12 Mbps
separation	
input <-> output	galvanic 5 kV
UuSB <-> output	resistance
UuSB <-> output	galvanic 1 kV
Uopt <-> input	galvanic 1 kV
Uopt <-> output	resistance
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminals	
USB (input)	$1 \times$ USB-B
USB (output)	$1 \times$ USB-A
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

"Continuous/pulse" - type signal transducers

Purpose

"Continuous-pulse"-type signal transducers are used to convert a continuous control signal into single control pulses required in automation control systems. After receiving the control signal at the UST input (rising edge), the transducer generates a pulse at the output 12 (contact 11-12 will be closed for the set time). After receiving the control signal at the (rising edge), the transducer generates a pulse at the output 9 (contact 8-9 will be closed for the set time).

PSI-02

for DIN rail

power supply	
PSI-02 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$
PSI-02 24 V	$21 \div 27 \mathrm{~V} \mathrm{AC/DC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
contact	separated $2 \times \mathrm{NO}$
input signal	
PSI-02 230 V	230 V AC
PSI-02 24 V	$24 \mathrm{~V} \mathrm{AC/DC}$
output pulses time	1 s
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

PSI-02D with adjustable pulse length, for DIN rail

power supply	
PSI-O2D 230 V	$165 \div 265$ V AC
PSI-02D 24 V	$9 \div 30 \mathrm{VAC} / \mathrm{DC}$
maximum load current (AC-1)	$2 \times 8 \mathrm{~A}$
contact	separated $2 \times \mathrm{NO}$
input signal	
PSI-O2D 230 V	$165 \div 265 \mathrm{~V} \mathrm{AC}$
PSI-O2D 24 V	$9 \div 30 \mathrm{~V} \mathrm{AC/DC}$
output pulse time (adjustable)	$1 \div 10 \mathrm{~s}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

PSI-02P with adjustable pulse length, for flush-mounted box

Purpose

MPG-03 is used to convert alternating current into unidirectional direct current.

power supply	
MPG- 03230 V	$110 \div 264 \mathrm{~V} \mathrm{AC}$
MPG- $03 \quad 12 \div 48 \mathrm{~V}$	$12 \div 48 \mathrm{VAC}$
maximum load current	2 A
output voltage indication	green LED
working temperature	$-25 \div 40^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

RM-07

Purpose

The RM-07 module serves as a signal amplifier for Modbus RTU transmission and as a galvanic separator for RS-485 networks. It amplifies the signal to extend the bus range and connect more devices. It can also be used for branching out lines and protecting them against electromagnetic interference. The module amplifies the signal in both directions. Galvanic separation between ports.

power supply	$9 \div 30 \mathrm{~V} \mathrm{DC}$
transmission rate	$1200 \div 115200 \mathrm{bps}$
system current	$<25 \mathrm{~mA}$
separation	
RS-485 (input) <-> RS-485 (output)	galvanic 1 kV
power supply <-> RS-485 (input)	resistive
power supply <-> RS-485 (output)	galvanic 1 kV
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Extension

To extend the bus by another group of 32 receivers.
Extendable up to 4 groups for baud speed of 9600 .

Separation

To protect a group of receivers against interference generated on the long communication networks.

Branch
To reduce the impact of interference caused by branching long signal lines.

Amplification

For signal amplification in long communication networks.

Purpose

The LT module is used for terminating, polarizing and amplifying the signal line signal between devices exchanging data in accordance with the Modbus communication protocol standard via RS-485 network.

Functioning

Termination is the termination of a signal line with appropriate resistances in order to maintain a uniform wave impedance of the entire line, which significantly improves the quality of transmitted data and eliminates errors that occur on the signal line.
The line is polarized when at least one of the Slave-type devices in the RS-485 network has no GND signal point. The polarization is carried out only for the Master-type device. The signal is amplified by actively powering the line with low voltage through one of the modules.

power supply	$15 \div 30 \mathrm{~V} \mathrm{DC}$
system current	$<10 \mathrm{~mA}$
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

Network termination system
Network polarization system with termination

Purpose

The analog separator is a module that enables the processing of the analog signal from one form to another with additional galvanic separation between the input signal, output signal and power supply.

power supply	$9 \div 24 \mathrm{~V} \mathrm{AC/DC}$
current consumption	$\max 200 \mathrm{~mA}$ 9 V DC (outputs compact)
power consumption	<2 W
voltage input	
voltage	$0 \div 10 \mathrm{~V}$
resistance	$690 \mathrm{k} \Omega$
maximum input voltage	40 V
current input	
current	$0 \div 20 \mathrm{~mA}$
resistance	150Ω
maximum input current	40 mA
voltage output	
voltage	$0 \div 10 \mathrm{~V}$
output current	10 mA
current output	
current	$0 \div 20 \mathrm{~mA}$
voltage	21 V
load resistance	$1 \mathrm{k} \Omega$
input/output separation	1 kV DC
input/power block separation	1 kV DC
output/power block separation	1 kV DC
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- Analog input signal to analog output signal convertion ($\mathrm{mA} \rightarrow \mathrm{V}, \mathrm{V} \rightarrow \mathrm{mA}, \mathrm{mA} \rightarrow \mathrm{mA}, \mathrm{V} \rightarrow \mathrm{V}$);
- High processing speed - the ability to carry signals up to 100 Hz ;
- Galvanic separation (min. 1 kV) between analog input, output and power supply;
- Visual validation of input and output signals.

Application

- Protection of expensive automation elements (PLCs, inverters, regulators, etc.) from overvoltages that may appear on the signal wires.
- Adjustment of analog signal levels to the capabilities of controllers or regulators, for example, it is possible to connect a sensor with current output to a PLC equipped with voltage analog inputs only;
- Increasing the range of analog transmission, for example very susceptible to voltage interference analog signal can be converted to a resistant current signal ($4 \div 20 \mathrm{~mA}$). In this form, it can be sent through the, for example, factory hall, and then return to the form of a voltage signal with a second converter.

Work systems

Voltage/voltage

Input signals IN:

- voltage $0 \div 10 \mathrm{~V}$;
- voltage $1 \div 10 \mathrm{~V}$;
- current $0 \div 20 \mathrm{~mA}$;
- current $4 \div 20 \mathrm{~mA}$.

Output signals OUT:

- voltage $0 \div 10 \mathrm{~V}$;
- voltage $1 \div 10 \mathrm{~V}$;
- current $0 \div 20 \mathrm{~mA}$;
- current $4 \div 20 \mathrm{~mA}$.

Current/current

Current/voltage

Voltage/current

Purpose

The converter enables access to the RS-485 serial port from any computer in the local network, and, using an IP address, from any computer in the world connected to the Internet. The communication takes place via TCP, UDP, DHCP and other protocols.

power supply	$9 \div 24 \mathrm{VDC}$
power supply (included)	9 V DC
RS-485 connector	$1.0 \mathrm{~mm}^{2}$
TCP connector	RJ- 45 socket
dimensions	$86 \times 100 \times 26 \mathrm{~mm}$
mounting	surface

MAX-CN-GPRS-485 RS-485 <-> GSM/GPRS network converter

Purpose

The CN-GPRS-485 converter is used for bidirectional, transparent data transmission from the RS-485 serial port to the network.
The converter supports the Identity and Heartbeat packet mechanisms as well as socket connections.

power supply	$9 \div 24 \mathrm{~V} \mathrm{DC}$
power supply (included)	9 V DC
RS-485 connector	$1.0 \mathrm{~mm}^{2}$
TCP connector	RJ- 45 socket
dimensions	$83 \times 86 \times 24 \mathrm{~mm}$
mounting	surface

MAX-CN-USB-485
 RS-485 -> USB converter

Purpose

The converter enables access to the RS-485 port from any PC equipped with a USB interface.

wire length	1.8 m
terminal RS-485	$2 \times 0.34 \mathrm{~mm}^{2}$

Purpose

It is used to protect electronic devices such as computers, PLCs, microprocessor systems, etc. against radio interference and overvoltage from the electrical system.

WB-1G / WB-1Y / WB-1R

2-position switch with indicator light

WB-2 3-position switch

ECH-06

 DC power reserve module, with battery charging function (1.3 $\div 7.2 \mathrm{Ah}$)
Purpose

The ECH-06 module along with an external gel battery with a nominal voltage of 12 V constitutes a backup power supply system for receivers with a supply voltage of $9 \div 30 \mathrm{~V}$ DC.

power supply Uin	$18 \div 30 \mathrm{VDC}$
output voltage Uout	Uin-0.5 V DC
	Uacu -0.5 V DC
maximum load current output Uout (AC-1)	3 A
supported battery capacity	$1.3 \div 7.2 \mathrm{Ah}$
maximum voltage battery Uacu	13.8 V DC
the maximum charging current	$<0.35 \mathrm{~A}$
power supply cut-off threshold	<10.5 V DC
power consumption	<1 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Measuring transducers

Analog transducers

Purpose

Analog transducers designed for measuring physical values with an external or internal sensor and converting the measured value to a unified analog output signal of $4 \div 20 \mathrm{~mA}$ current or $0 \div 10 \mathrm{~V}$ voltage.

Temperature transducers

AT-1/-DS / AT-1U-DS for use with DS18(...) 20 digital temperature sensors

Temperature transducer with $4 \div 20 \mathrm{~mA}$ current output (AT-1I-DS) or $0 \div 10 \mathrm{~V}$ voltage output (AT-1U-DS).

power supply	
AT-1I-DS	$9 \div 30 \mathrm{VDC}$
AT-1U-DS	$12 \div 30 \mathrm{VDC}$
measuring range	$-50 \div 120^{\circ} \mathrm{C}$
setting range	
minimum temperature	$-50 \div 95^{\circ} \mathrm{C}$
maximum temperature	$5 \div 120^{\circ} \mathrm{C}$
output signal	
AT-11-DS	$4 \div 20 \mathrm{~mA}$
AT-1U-DS	$0 \div 10 \mathrm{~V}$
processing error	$\pm 0.25^{\circ} \mathrm{C}$
signal cable	
AT-11-DS	<300 m
AT-1U-DS	<20 m
sensor wire	<50 m
temperature probe	RT4, DS1820, DS18B20, DS18S20
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

AT-1I-KT / AT-1U-KT

Temperature transducer with $4 \div 20 \mathrm{~mA}$ current output (AT-1I-KT) or $0 \div 10 \mathrm{~V}$ voltage output (AT-1U-KT).

power supply	
AT-11-KT	$9 \div 30 \mathrm{VDC}$
AT-1U-KT	$12 \div 30 \mathrm{~V} \mathrm{DC}$
measuring range	$-50 \div 150^{\circ} \mathrm{C}$
setting range	
minimum temperature	$-50 \div 95^{\circ} \mathrm{C}$
maximum temperature	$5 \div 150^{\circ} \mathrm{C}$
output signal	
AT-11-KT	$4 \div 20 \mathrm{~mA}$
AT-1U-KT	$0 \div 10 \mathrm{~V}$
processing error	$\pm 1^{\circ} \mathrm{C}$
signal cable	3
AT-11-KT	<300 m
AT-1U-KT	$<20 \mathrm{~m}$
sensor wire	<50 m
temperature probe	RT, RT2, KTY81-210
power consumption	0.8 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Full measuring range $-50 \div 150^{\circ} \mathrm{C}$, can be limited by potentiometers setting the upper and lower threshold of the measuring range. The parameters of the dedicated RT or RT2 probes can be found in the table on page 274.

AT-1|-PT / AT-1U-PT
 for use with PT100 3-wire temperature sensor

Temperature transducer with $4 \div 20 \mathrm{~mA}$ current output (AT-1I-PT) or $0 \div 10 \mathrm{~V}$ voltage output (AT-1U-PT).

The connection diagrams for the AT-1I-PT and AT-1U-PT transmitters can be found on page 290.Full measuring range $-200 \div 600^{\circ} \mathrm{C}$, can be limited by potentiometers setting the upper and lower threshold of the measuring range.
The parameters of the dedicated RT56 probe can be found in the table on page 274.

AT-1I / AT-1U
 for use with KTY temperature sensor
 Products available until stocks run out

Temperature transducer with $4 \div 20 \mathrm{~mA}$ current output (AT-1I) or $0 \div 10 \mathrm{~V}$ voltage output (AT-1U).
The connection diagrams for the AT-1I and AT-1U transmitters can be found on page 291.The module cooperates with a resistance temperature sensor of the KTY81-210 type (or equivalent)
The parameters of the dedicated RT or RT2 probes can be found in the table on page 274

Temperature transducer with $4 \div 20 \mathrm{~mA}$ current output (AT-2I) or $0 \div 10 \mathrm{~V}$ voltage output (AT-2U).

(!)
The connection diagrams for the AT-2l and AT-2U transmitters can be found on page 291.
The module operates in one of two options: with an internal temperature sensor or external probe.
(!) The module cooperates with a resistance temperature sensor of the KTY81-210 type (or equivalent). The parameters of the dedicated RT or RT2 probes can be found in the table on page 274.

AT-3I for use with PT-100 temperature sensor
 Product available until stocks run out

Transducer with $4 \div 20 \mathrm{~mA}$ current output.

power supply	$9 \div 30 \mathrm{~V} \mathrm{DC}$
measuring range	$-100 \div 100^{\circ} \mathrm{C}$
maximum measurement error	$\pm 1^{\circ} \mathrm{C}$
output signal	$4 \div 20 \mathrm{~mA}$
the maximum length of	
shielded signal cable	300 m
temperature sensor	$\mathrm{PT}-100$
power consumption	0.8 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP20

(!
The connection diagram for the AT-3I transducer can be found on page 291.
(!)
The module cooperates with a temperature sensor of the PT-100 type (or equivalent).
The parameters of the dedicated RT56 probe can be found in the table on page 274.

Connection diagrams for temperature sensors

AT-1I-DS

AT-1U-DS

AT-1I-KT

AT-1U-KT

AT-1I-PT

AT-1U-PT

Connection diagrams for temperature sensors cont.

AT-1I

AT-1U

AT-21

AT-2U

AT-3I

Voltage transducer

AV-1| 1-phase $230 \mathrm{~V} \mathrm{AC} / 400 \mathrm{~V}$ DC

Purpose

The AV-1I transducer is designed to measure AC/DC voltage (True RMS) and to convert the measured value into an analog current output signal in the range of $4 \div 20 \mathrm{~mA}$.

power supply	$9 \div 30 \mathrm{~V} \mathrm{DC}$
measuring range (True RMS)	
AC alternating voltage	$0 \div 285 \mathrm{~V}$
DC constant voltage	$0 \div 400 \mathrm{~V}$
maximum voltage at the measuring input	320 V AC
	450 VDC
maximum measurement error	$\pm 1 \mathrm{~V}$
output signal	$4 \div 20 \mathrm{~mA}$
maximum length of shielded signal cable	300 m
overvoltage IN->OUT	3 kV
power consumption	0.8 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$\mathrm{IP20}$

Current transducer

AC-1|5A 1-phase 5 A AC/AC-1| 15A 1-phase 15 A AC (20 A DC)

Purpose

The AC-1I transducer is designed to measure AC/DC voltage (True RMS) and to convert the measured value into an analog current output signal in the range of $4 \div 20 \mathrm{~mA}$.

power supply	$9 \div 30 \mathrm{VDC}$
measuring range (True RMS)/maximum voltage	
AC-11 5A	$0 \div 5 \mathrm{~A} / 285 \mathrm{~V}$ AC
AC-11 15A	$0 \div 15 \mathrm{~A} / 285 \mathrm{~V}$ AC
permissible overload	$100 \mathrm{~A} / 100 \mathrm{~ms}$
maximum measurement error	$\pm 2.5 \%$
output signal	$4 \div 20 \mathrm{~mA}$
maximum length of shielded signal cable	300 m
overvoltage IN->OUT	2.1 kV
power consumption	0.8 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

MeternetPRO
 network parameter recording system

Purpose

The MeternetPRO application enables remote reading of states and indications of meters, multimeters, measuring transducers, I/O extension modules and other measuring devices communicating according to Modbus RTU and M-Bus protocols. Data exchange between the devices is carried out via RS-485, M-Bus or LAN local networks. The program along with its database is installed on a special MT-CPU-1 server, which operates in the LAN network. The software user interface is a Web application (website). The program is accessible through any web browser. In the case of a LAN with a public IP address, you can configure the program to operate and read data over the Internet.

More information on p. 252

Relays with analog input

PA-01|
 analog relay with the current input

Purpose

The PA-01I device is used to convert a $0 \div 20 \mathrm{~mA} / 4 \div 20 \mathrm{~mA}$ analog signal to a relay output control signal. This allows sensors with analog output to be used in automation systems. The measurement chain is galvanically isolated from the power supply of the device.

power supply	$9 \div 30 \mathrm{~V} \mathrm{DC}$
maximum load current (AC-1)	8 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum current consumption	100 mA
range of input signals	$0 \div 20 \mathrm{~mA}$
hysteresis setting range	$0 \div 5 \mathrm{~mA}$
input resistance	$150 \Omega \pm 0.1 \%$
measurement resolution	$5 \mu \mathrm{~A}$
measurement error	1%
hysteresis in the "window" mode	$200 \mu \mathrm{~A}$
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	$\mathrm{IP20}$

PA-01U
analog relay with voltage input

Purpose

The PA-01U device is used to convert a $0 \div 10 \mathrm{~V}$ analog signal to a relay output control signal. This allows sensors with analog output to be used in automation systems. The measurement chain is galvanically isolated from the power supply of the device.

power supply	$9 \div 30 \mathrm{VDC}$
maximum load current (AC-1)	8 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum current consumption	100 mA
range of input signals	$0 \div 10 \mathrm{~V}$
hysteresis setting range	$0 \div 2.5 \mathrm{~V}$
input resistance	$69 \mathrm{k} \Omega \pm 0.1 \%$
measurement resolution	2.5 mV
measurement error	1\%
hysteresis in the "window" mode	100 mV
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Interesting and practical

PA-02-MBT

analog panel relay $0 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{~V}$ with display

Purpose

PA-02-MBT is a panel transducer of $0 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{~V}$ signals with the ability to set two independent alarms that control two relays. The measurement result is displayed on a 14 mm display. The device is equipped with a Modbus RTU bus which enables configuration and reading of measured parameters.

Selected functions

- 2 independent alarms controlling 2 outputs;
- Measurement of $0 \div 10 \mathrm{~V}$ voltage and $0 \div 20 \mathrm{~mA}$ current;
- Galvanic separation between the power supply and measurement chain;
- Display value can be scaled.

power supply	$9 \div 30 \mathrm{~V} \mathrm{DC}$
maximum load current (AC-1)	8 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
maximum current consumption	100 mA
range of input signals	$0 \div 20 \mathrm{~mA}$
hysteresis setting range	$0 \div 5 \mathrm{~mA}$
input resistance	$150 \Omega \pm 0.1 \%$
measurement resolution	$5 \mu \mathrm{~A}$
measurement error	1%
hysteresis in the "window" mode	$200 \mu \mathrm{~A}$
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
dimensions	1 module $(18 \mathrm{~mm})$
mounting	for TH-35 rail
ingress protection	IP 20

Transducers with Modbus RTU output

Purpose
The transducers designed to measure physical values using an external or internal sensor with the possibility to read data from their internal registers using the Modbus RTU communication protocol.

Current transducer

MB-1I-1 5A MB-3I-1 5A
 1-phase / MB-1|-1 15A
 1-phase

Purpose
The transducer is designed for AC/DC (True RMS) current measurement with communication output RS-485 (Modbus RTU).

power supply	$9 \div 30 \mathrm{VDC}$
measuring range (True RMS)	
MB-11-15 A	0 $\div 5 \mathrm{~A}$ AC
MB-11-1 15 A	$0 \div 15$ A AC
MB-31-15 A	$0 \div 5 \mathrm{~A} A C$
MB-31-1 15 A	$0 \div 15$ A AC
maximum measurement error	$\pm 0.5 \%$
reading registry precision	0.1 A
overvoltage IN->OUT	2.1 kV
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.8 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

(!) The connection diagrams for the MB-1I-1 and MB-3I-1 transmitters can be found on page 296.

Voltage transducers

MB-1U-1
 1-phase
 MB-3U-1
 3-phase

Purpose

The transducer is designed for AC/DC voltage (True RMS) measurement with communication output RS-485 (Modbus RTU).

power supply	$9 \div 30 \mathrm{VDC}$
measuring range (True RMS)	
AC voltage	$0 \div 285 \mathrm{~V}$
DC voltage	$0 \div 400 \mathrm{~V}$
maximum measurement error	$\pm 0.5 \%$
reading registry precision	1 V
overvoltage IN->OUT	3 kV
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.8 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
relative air humidity (for $+30^{\circ} \mathrm{C}$)	85\%
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Connection diagrams for measuring transducers

MB-1I-1 5A/MB-1I-1 15A
direct measurement

MB-3i-1 5A/MB-3i-1 15A half indirect measurement

MB-1U-1

MB-3U-1

Temperature transducers

MB-DS-2 for use with DS1820 digital temperature sensor

Functioning

Temperature recording from 2 independent measuring channels in the range from -55 to $125^{\circ} \mathrm{C}$. Saving the maximum and minimum recorded temperature in the non-volatile memory. A dedicated RT4 probe can be found in the table on page 274.

power supply	$9 \div 30 \mathrm{VDC}$
measuring range	$-55 \div 125^{\circ} \mathrm{C}$
maximum measurement error	$\pm 1^{\circ} \mathrm{C}$
temperature sensor type	DS1820/DS18B20/DS18S20
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

MB-DS-10
 for use with DS1820 digital temperature sensor (up to 10 pcs.)

Functioning

The transmitter supports up to 10 sensors on one channel (1-Wire bus). Recorded value: current temperature.
A dedicated RT4 probe can be found in the table on page 274.

power supply	$9 \div 30 \mathrm{VDC}$
measuring range	$-55 \div 125^{\circ} \mathrm{C}$
maximum measurement error	$\pm 1^{\circ} \mathrm{C}$
temperature sensor type	DS1820/DS18B20/DS18S20
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

MB-DS-30
for use with DS1820 digital temperature sensor (up to 30 pcs.)

Functioning

The transmitter supports up to 30 sensors on one channel (1-Wire bus). Recorded value: current temperature.
A dedicated RT4 probe can be found in the table on page 274.

power supply	$9 \div 30 \mathrm{VDC}$
measuring range	$-55 \div 125^{\circ} \mathrm{C}$
maximum measurement error	$\pm 1^{\circ} \mathrm{C}$
temperature sensor type	DS1820/DS18B20/DS18S20
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

MB-PT-100

Functioning
Temperature recording in the range from -100 to $400^{\circ} \mathrm{C}$. Saving the maximum and minimum recorded temperature in the non-volatile memory.
The module cooperates with a temperature sensor of the PT100 type (or equivalent).
The parameters of the dedicated RT56 probe can be found in the table on page 264.

power supply	$9 \div 30 \mathrm{VDC}$
measuring range	$-100 \div 400^{\circ} \mathrm{C}$
maximum measurement error	$\pm 1^{\circ} \mathrm{C}$
overvoltage IN->OUT	2.1 kV
temperature sensor type	PT100
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

MB-TC-1 for use with $\mathrm{K}, \mathrm{J}, \mathrm{E}, \mathrm{N}, \mathrm{T}, \mathrm{S}, \mathrm{R}, \mathrm{B}$ thermocouples

Functioning

Recorded values: current temperature and recorded minimum and maximum temperature. Adjustable measurement parameters of the transducer: the averaging time of temperature measurement result and the standard temperature correction. The sensor type is software-set according to Modbus RTU protocol functions.

power supply	$9 \div 30 \mathrm{VDC}$
measurement range	dependent on the type of sensor
maximum measurement error	$\pm 2^{\circ} \mathrm{C}$
temperature sensor type	K, J, E, N, T, S, R, B
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Pulse meter (4-channels)

MB-LI-4Lo
 low-voltage counting inputs
 MB-LI-4 Hi
 high-voltage counting inputs

power supply	$9 \div 30 \mathrm{VDC}$
number of counting inputs	4
counting input voltage	
MB-LI-4 Lo	$6 \div 30 \mathrm{~V} \mathrm{AC/DC}$
MB-LI-4 Hi	$160 \div 265 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum counting frequency	100 Hz
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 4 independent counters;
- Counter input suitable for AC/DC signals;
- " n " of the factor (floating point value);
- Scaled value (number of pulses \times factor);
- Selection of the state trigger option 1: high or low voltage level;
- Selection of the input pulse edge (rising or trailing);
- Frequency filter, which allows limiting the maximum frequency of the counted pulses (to eliminate interference at the input of the counter);
- The memory of the meter status after a power failure;
- Digital input function.

Operating time meter (4-channel)

MB-LG-4Lo
 MB-LG-4 Hi

low-voltage counting inputs
high-voltage counting inputs

power supply	$9 \div 30 \mathrm{VDC}$
number of counting inputs	4
counting input voltage	
MB-LG-4 Lo	$6 \div 30 \mathrm{~V} \mathrm{AC/DC}$
MB-LG-4 Hi	$160 \div 265 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
maximum input signal frequency	100 Hz
maximum measured time	>150 years
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 4 independent counters;
- Overall results in FLOAT (floating point) values for hours and INT (integer) values broken down into seconds, minutes, hours, days (4 registers per 1 counter);
- Counter input suitable for AC/DC signals;
- Selection of the state trigger option 1: high or low voltage level;
- Time filter, which allows limiting the maximum length of the input signal (to eliminate interference at the input of the counter);
- The memory of the meter status after a power failure;
- Digital input function.

Functioning

The transducer performs continuous temperature measurement in the range $-40 \div 70^{\circ} \mathrm{C}$ and humidity in the range $0 \div 100 \% \mathrm{RH}$.

Transducer in special compact-sized plastic box, connected through a PG7 cable gland with circular cables of any length, ma ximum $\varnothing 7$ (for example: $2 \times 0,5 \mathrm{~mm}^{2}$).
Box with a special sealing flange, fixed to the base by means of two screws, clo sed with a cover with silicone gasket using 4 screws

power supply	$9 \div 30 \mathrm{VDC}$
measuring range	$0 \div 100 \% \mathrm{RH} /-40 \div 70^{\circ} \mathrm{C}$
maximum measurement error of temperature	$\pm 1^{\circ} \mathrm{C}$
maximum measurement error of humidity	$\begin{array}{r} \pm 4.5 \%(0 \div 80 \mathrm{RH}) \\ \pm 6.5 \%(80 \div 100 \mathrm{RH}) \end{array}$
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-40 \div 70^{\circ} \mathrm{C}$
terminal 2.5	mm^{2} screw terminals
tightening torque	0.4 Nm
dimensions	$64 \times 42 \times 30 \mathrm{~mm}$
mounting	surface
ingress protection	IP65

MB-LS-1
 lighting brightness level transducer

Functioning

The transmitter continuously measures the level of brightness (sunlight) in the range of $1 \div 2000 \mathrm{~lx}$.

		$4 \quad 42 \mathrm{~mm}$		power supply	$9: 30 \mathrm{VDC}$
				measuring range	1:65000 1x
				maximum measurement error	$\pm 2 \%$
		雼		port	RS-485
	Transducer in special, compact-sized plastic box, connected through a PG7			communication protocol	Modbus RTU
				type of work	Slave
				communication parameters baud rate (adiustable)	1200:115200 bit/s
	cable gland with circular			data bits	
	cables of any length, ma-			stop bits	1/1.5/2
	$2 \times 0,5 \mathrm{~mm}^{2}$).			parity bit	EVEN/ODD/None
C 6	Box with a special sealing		airitihtering		$1 \div 247$ 0.3 w
	flange, fixed to the base by			working temperature	-40.70 ${ }^{0.30^{\circ} \mathrm{C}}$
	means of two screws, clo-		P67 gland	terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
	sed with a cover with sili-			tightening torque	0.4 Nm
	cone gasket using 4 screws.			dimensions	$42 \times 64 \times 30 \mathrm{~mm}$
				mounting	位
				ingress protection	1P65

MB-GPS-1 GPS location converter

Functioning

The converter is equipped with a standard GPS (Global Positioning System) satellite tracking module.
Based on the received signal, the converter provides current data for its location:

- geographical coordinates (length/width);
- date (year/month/day);
- time (hour/minute/second).

Transducer in special, compact-sized plastic box connected through a PG7 cable gland with circula cables of any length, ma ximum $\varnothing 7$ (for example: $2 \times 0,5 \mathrm{~mm}^{2}$). Box with a special sealing flange, fixed to the base by means of 2 screws, closed with a cover with silicone gasket using 4 screws.

power supply	$9 \div 30 \mathrm{VDC}$
maximum current consumption	40 mA
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-40 \div 70^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	$60 \times 85 \times 35 \mathrm{~mm}$
mounting	surface
ingress protection	IP65

I/O expansion modules with RS-485 port and Modbus RTU protocol

Purpose
MR modules serve as an external device extending inputs or outputs of the programmable controllers or other devices, where data exchange takes place via RS-485 port according to Modbus RTU protocol.

MR-DIO-1 digital inputs (DI)/outputs (DO) module

Functioning

The module has 6 universal lines, which, depending on the way of connection and configuration, can act as a digital input or output. The module has a function of recording the status of outputs in the non-volatile local memory. Each time the power supply to the module is switched on, the outputs can be restored to the saved state.

MR-DI-4Lo / MR-DI-4 Hi digital inputs (DI) modules

Functioning

MR-DI-4 module has 4 inputs. The module has configurable options for activating the inputs (TRUE value) with low (0 V) or high ($\mathrm{V}+$) signal and for closing or opening the input signal circuit. The time filter is used to eliminate interference (false pulses) that may appear at the input. This is a setting of the minimum duration of the input signal that will be seen at the input and will be treated as a status change. Shorter signals are ignored.

power supply	$9 \div 30 \mathrm{VDC}$
number of digital inputs	4
voltage range for digital inputs	
MR-DI-4 Lo	$6 \div 30 \mathrm{~V} \mathrm{AC/DC}$
MR-DI-4 Hi	$160 \div 265 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.3 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- 4 independent inputs;
- Input suitable for AC/DC signals;
- Selection of the state trigger option 1: high or low voltage level;
- Selection of the state 1 trigger option: by closing or opening the input circuit;
- Time filter, which allows setting the minimum acceptable length of the input signal (to eliminate interference at the input)

MR-RO-1
 multifunctional relay output (RO) module; $1 \times \mathrm{NO} / \mathrm{NC}$ contact

Functioning

MR-RO-1 module has a controllable relay output (separated contact 16 A).
Control via Modbus RTU protocol or standalone operation.

power supply	$9 \div 30 \mathrm{VDC}$
maximum load current (AC-1)	16 A
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.6 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- Control in ON/OFF mode;
- Time control;
- off delay;
- off delay for a preset time;
- ON/OFF cyclic operation;
- OFF/ON cyclic operation;
- The memory of the status after a power failure;
- The operation also in standalone mode;
- Autostart for time functions;
- Measuring of the time of the last relay activation;
- Number of relay activations;
- The number of performed cycles for time functions.

MR-RO-4

relay output (RO) module; $4 \times \mathrm{NO}$ contact

Functioning

MR-RO-4 module has a controllable relay output (separated contacts 4×16 A).
Control via Modbus RTU protocol or standalone operation.

power supply	$9 \div 30 \mathrm{VDC}$
maximum load current (AC-1)	$4 \times 16 \mathrm{~A}$
contact	separated $4 \times \mathrm{NO}$
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	2 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$1.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	4 modules (70 mm)
mounting	for TH-35 rail
ingress protection	IP20

Functions

- Control in ON/OFF mode;
- Time control;
- The memory of the status after a power failure;
- off delay;
- The operation also in standalone mode;
- off delay for a preset time;
- Autostart for time functions;
- Measuring of the time of the last relay activation;
- ON/OFF cyclic operation;
- OFF/ON cyclic operation;
- Number of relay activations;
- The number of performed cycles for time functions.

MR-Al-1

Functioning

The module has 4 universal analog inputs. Input type, $0 \div 10 \mathrm{~V}$ voltage or $4 \div 20 \mathrm{~mA}$ current, is determined by internal jumpers. The module continuously measures current and voltage input values at all inputs regardless of the hardware configuration of the input types (jumper position). However, only the input values for which these inputs are configured will be measured correctly.

MR-AO-1 voltage analog outputs (AO) module

Functioning

The module has 4 analog outputs compliant with the $0 \div 10 \mathrm{~V}$ standard. The current voltage value of a given output is determined by means of Modbus RTU protocol commands. Additionally, the module has a function of recording the status of inputs in the non-volatile local memory. Each time the power supply to the module is switched on, the outputs can be restored to the saved state.

power supply	$9 \div 30 \mathrm{VDC}$
number of analog output	4
output signal	
output voltage	$0 \div 10 \mathrm{~V}$
output maximum load	40 mA
the accuracy of output voltage settings	0.1 V
port	RS-485
communication protocol	Modbus RTU
type of work	Slave
power indication	green LED
communication indication	yellow LED
communication parameters	
baud rate (adjustable)	1200 $\div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/2
parity bit	EVEN/ODD/NONE
address	$1 \div 247$
power consumption	0.5 W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

Purpose

MR-LED-T is a user panel for systems with Modbus RTU communication. It allows displaying the value read in the system and provides 3 buttons that can be used as inputs. The module is closed in a $36 \times 72 \mathrm{~mm}$ panel housing with a 14 mm display at the front.

Interesting and practical

Contactors and relays

Electromagnetic modular contactors

Purpose

Electromagnetic contactors in modular enclosures for direct mounting on $\mathrm{TH}-35 \mathrm{~mm}$ rail.

Functioning

If the power supply voltage is applied to the contactor coil, the contact will switch. The activation status of the contactor is indicated by a red marker in the window. After a power failure, the contacts return to their original position.

ST25/ST25-...-M

ST40/ST40-...-M

Type of the device	Contacts	Current of main current circuit [A]	Total power AC-1 230 V [kW]	Total power AC-3 230 V [kW]	Voltage of power supply of the coil	Consumption of power [W]	Dimensions [module]	Weight [g]	Screw terminals [mm^{2}]
ST25-02-24 DC	$2 \times \mathrm{NC}$	25	4	1.3	24 V DC	1.2	1	106	4
ST25-11-24 DC	$1 \times \mathrm{NO}+1 \times \mathrm{NC}$	25	4	1.3	24 V DC	1.2	1	106	4
ST25-11	$1 \times \mathrm{NO}+1 \times \mathrm{NC}$	25	4	1.3	230 V AC	1.2	1	106	4
ST25-20-24 DC	$2 \times \mathrm{NO}$	25	4	1.3	24 V DC	1.2	1	106	4
ST25-20	$2 \times \mathrm{NO}$	25	4	1.3	230 V AC	1.2	1	106	4
ST25-20/24	$2 \times \mathrm{NO}$	25	4	1.3	24 V AC	1.2	1	106	4
ST25-20-M	$2 \times \mathrm{NO}$	25	4	1.3	230 V AC	1.2	1	106	4
ST25-22	$2 \times \mathrm{NO}+2 \times \mathrm{NC}$	25	9	2.2	230 V AC	4.0	2	168	6
ST25-30	$3 \times \mathrm{NO}$	25	9	2.2	230 V AC	4.0	2	168	6
ST25-31	$3 \times \mathrm{NO}+1 \times \mathrm{NC}$	25	9	2.2	230 V AC	4.0	2	168	6
ST25-31/24	$3 \times \mathrm{NO}+1 \times \mathrm{NC}$	25	9	2.2	24 V AC	4.0	2	168	6
ST25-40	$4 \times \mathrm{NO}$	25	9	2.2	230 V AC	4.0	2	168	6
ST25-40-24 AC/DC	$4 \times \mathrm{NO}$	25	9	2.2	$24 \mathrm{VaC} / \mathrm{DC}$	4.0	2	168	6
ST25-40/24	$4 \times \mathrm{NO}$	25	9	2.2	24 V AC	4.0	2	168	6
ST25-40-M	$4 \times \mathrm{NO}$	25	9	2.2	230 V AC	4.0	2	168	6
ST25-04	$4 \times \mathrm{NC}$	25	9	2.2	230 V AC	4.0	2	168	6
ST40-04	$4 \times \mathrm{NC}$	40	16	5.5	230 V AC	6.4	3	241	16
ST40-22	$2 \times \mathrm{NO}+2 \times \mathrm{NC}$	40	16	5.5	230 V AC	6.4	3	241	16
ST40-31	$3 \times \mathrm{NO}+1 \times \mathrm{NC}$	40	16	5.5	230 V AC	6.4	3	241	16
ST40-40	$4 \times \mathrm{NO}$	40	16	5.5	230 V AC	6.4	3	241	16
ST40-40/24	$4 \times \mathrm{NO}$	40	16	5.5	24 V AC	6.4	3	241	16
ST40-40-M	$4 \times$ NO	40	16	5.5	230 V AC	6.4	3	241	16
ST63-31	$3 \times \mathrm{NO}+1 \times \mathrm{NC}$	63	24	8.5	230 V AC	6.4	3	241	16
ST63-40	$4 \times \mathrm{NO}$	63	24	8.5	230 V AC	6.4	3	241	16
ST63-40-24 AC/DC	$4 \times \mathrm{NO}$	63	24	8.5	$24 \mathrm{VAC} / \mathrm{DC}$	6.4	3	241	16
ST63-40/24	$4 \times \mathrm{NO}$	63	24	8.5	24 V AC	6.4	3	241	16
ST63-40-M	$4 \times \mathrm{NO}$	63	24	8.5	230 V AC	6.4	3	241	16
ST100-20	$2 \times \mathrm{NO}$	100	22	8.0	230 V AC	6.4	3	305	25
ST100-40	$4 \times \mathrm{NO}$	100	38	13.0	230 V AC	9.0	6	617	25
				norm No.					IEC 61095
				service life of the electrical connection					1×10^{5}
				service life of the mechanical connection					1×10^{6}
				insulation voltage					4.0 kV
				working temperature					$-25 \div 50^{\circ} \mathrm{C}$
				mounting					for TH-35 rail
				ingress protection					IP20

ST63/ST63-...-M

ST100

Electromagnetic relays

Functioning
If the power supply voltage is applied to the coil of the relay, the contact will switch. The activation status of the relay is indicated by a green LED. After a power failure, the contact returns to their original position.

Modular for TH-35 rail

PK-1P $\quad 1 \times$ NO/NC contact (<16 A)
PK-1Z-LED
$1 \times$ NO contact (<16A)
PK-2P
$2 \times$ NO/NC contact ($2 \times 8 \mathrm{~A}$)
PK-2Z-LED
$2 \times$ NO contact $(2 \times 16$ A) NEW!
PK-3P
$3 \times$ NO/NC contact ($3 \times 8 \mathrm{~A}$)
PK-4PZ
PK-4PR
$2 \times$ NO/NC contact $(2 \times 8$ A $)+2 \times$ NO contact $(2 \times 8$ A)
$2 \times$ NO/NC contact $(2 \times 8 \mathrm{~A})+2 \times$ NC contact $(2 \times 8 \mathrm{~A})$

Example of marking when placing an order:
PK-2P 48 V supply voltage

power supply	
PK-...P... 230V/PK-...Z-LED 230V	V 230VAC
PK-...P... 110 V	$110 \mathrm{VAC} / \mathrm{DC}$
PK-...P... 48V	$48 \mathrm{VAC} / \mathrm{DC}$
PK-...P...24V/PK-...Z-LED 24 V	$24 \mathrm{VAC} / \mathrm{DC}$
PK-...P... 12V/PK-1Z-LED 12 V	$12 \mathrm{VAC} / \mathrm{DC}$
contact/maximum load current (AC-1)	
PK-1P	$1 \times N \mathrm{~N} / \mathrm{NC} /<16 \mathrm{~A} 250 \mathrm{~V}$ AC
PK-1Z-LED	$1 \times \mathrm{NO} /<16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms}) 250 \mathrm{VAC}$
PK-2P	$2 \times \mathrm{NO} / \mathrm{NC} / 2 \times 8 \mathrm{~A} 250 \mathrm{~V}$ AC
PK-2Z-LED	$2 \times \mathrm{NO} / 2 \times 16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms}) 250 \mathrm{VAC}$
PK-3P	$3 \times N \mathrm{NO} / \mathrm{NC} / 3 \times 8 \mathrm{~A} 250 \mathrm{~V}$ AC
PK-4PZ	$2 \times \mathrm{NO} / \mathrm{NC}, 2 \times \mathrm{NO} / 4 \times 8$ A 250 V AC
PK-4PR	$2 \times$ NO/NC, $2 \times$ NC / 4×8A 250 V AC
mechanical durability	min. 5×10^{6} cycles
power consumption	25 mA
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20

(!)
Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.

PK-1P

PK-3P

PK-4PR

PK-2P

PK-4PZ

PP-1P
$1 \times$ NO/NC contact <16A 250 VAC
PP-1Z-LED
$1 \times$ NO contact <16 A (120 A/20 ms) 250 V AC
PP-2Z
$2 \times$ NO contact <16 A 250 V AC
PP-2Z-LED

power supply	
PP-1P 24V	7 $\div 30 \mathrm{VAC} / 9 \div 40 \mathrm{VDC}$
PP-1P 230V	$100 \div 265 \mathrm{VAC}$
PP-1Z-LED 24 V	$7 \div 30 \mathrm{VAC} / 9 \div 40 \mathrm{VDC}$
PP-1Z-LED 230 V	$100 \div 265 \mathrm{VAC}$
PP-2Z 24 V	$7 \div 30 \mathrm{VAC} / 9 \div 40 \mathrm{VDC}$
PP-2Z 230V	100 $\div 265$ VAC
PP-2Z-LED 24V	$7 \div 30 \mathrm{VAC} / 9 \div 40 \mathrm{VDC}$
PP-2Z-LED 230 V	$100 \div 265$ VAC
contacts/maximum load current (AC-1)	
PP-1P 24 V	1×NO/NC / <16A 250VAC
PP-1P 230V	1×NO/NC / <16A 250VAC
PP-1Z-LED 24 V	$1 \times \mathrm{NO} /<16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms}) 250 \mathrm{VAC}$
PP-1Z-LED 230V	$1 \times \mathrm{NO} /<16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms}) 250 \mathrm{VAC}$
PP-2Z 24 V	$2 \times \mathrm{NO} /<16 \mathrm{~A} 250 \mathrm{VAC}$
PP-2Z 230V	$2 \times \mathrm{NO} /<16 \mathrm{~A} 250 \mathrm{VAC}$
PP-2Z-LED 24 V	$2 \times \mathrm{NO} /<16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms}) 250 \mathrm{VAC}$
PP-2Z-LED 230V	$2 \times \mathrm{NO} /<16 \mathrm{~A}(120 \mathrm{~A} / 20 \mathrm{~ms}) 250 \mathrm{VAC}$
mechanical durability	min. 5×10^{6} cycles
power consumption	<0,6 W
working temperature	$-25 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	¢54 ($48 \times 43 \mathrm{~mm}$), $\mathrm{h}=25 \mathrm{~mm}$
mounting	w puszce podtynkowej $\varnothing 60$
ingress protection	IP20

(!)
Version with the "LED" index has a contact adapted to work with receivers with high starting current, such as LED lamps, ESL fluorescent lamps, electronic transformers, discharge lamps, etc.

PP-1P
\qquad
$3 \longrightarrow 4$
PP-2Z-LED

Solid-state relays

Purpose
Solid-state relays are designed to control low-power AC circuits.

Modular for TH-35 rail

SSR-5A-D Modular solid-state relay 5A

Functioning

Applying supply voltage to the contactor coil will switch the contact. The activation status of the contactor is indicated by a red marker in the window. After loss of supply voltage, the contacts return to their original position.

Cechy

- Load switching at "zero" - reducing current surge when switching a circuit (e.g. LED lighting);
- Built-in thermal protection and operation indication;
- Silent operation;
- Switching on without sparking or vibration of contacts;
- Unlimited number of switching operations;

input	
power supply	
AC	$5 \div 27 \mathrm{~V} \mathrm{AC}$
DC	$5 \div 32 \mathrm{~V}$ DC
power consumption	0.2 W
output	
rated voltage	230 V AC
rated current	5 A
contacts	$1 \times \mathrm{NO}$
maximum activation current	$150 \mathrm{~A} / 10 \mathrm{~ms}$
activation delay	$<20 \mathrm{~ms}$
power loss (for 5 A)	4 W
actuator	triak
IN/OUT isolation	3 kV
thermal protection	$100^{\circ} \mathrm{C}$
power indication	green LED
over temperature indication	red LED
working temperature	$-20 \div 50^{\circ} \mathrm{C}^{*}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module (18 mm)
mounting	for TH-35 rail
ingress protection	IP20
* Limit temperature depends ditions	rrent and ventilation con

Measuring current transformers

Purpose

The current transformer is used for proportional change of high current intensities to lower values, adapted to the measuring ranges of control and measuring devices.

TI-30/... / TI-80
 1-phase closed-core transformers

norm No.	IEC $60044-1$
nominal secondary current Is	5 A
rated voltage	0.66 kV AC
insulation breakdown voltage	$3 \mathrm{kV} / 1 \mathrm{~min}$.
frequency	$50 / 60 \mathrm{~Hz}$
security factor	$\mathrm{FS}<5$
working temperature	$-5 \div 40^{\circ} \mathrm{C}$
S1/S2 terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
installation	board/busbar
orientation	vertical/horizontal
ingress protection	IP20

Type Transformer $\mathrm{Ip} / \mathrm{ls}$	Class	Power $[\mathrm{VA}]$	P1/P2 hole dimensions $[\mathrm{mm}]$	Dimensions $[\mathrm{mm}]$	Weight $[\mathrm{kg}]$	
TI-30*	$30 / 5$	1	2.5	$\varnothing 22$	$44 \times 67 \times 30$	0.135
TI-40	$40 / 5$	1	1.0	$\varnothing 22$	$44 \times 67 \times 30$	0.135
TI-50	$50 / 5$	1	1.5	$\varnothing 22$	$44 \times 67 \times 30$	0.135
TI-60	$60 / 5$	1	1.5	$\varnothing 22$	$44 \times 67 \times 30$	0.135
TI-75	$75 / 5$	1	1.5	$\varnothing 22$	$44 \times 67 \times 30$	0.135
TI-80	$80 / 5$	1	1.5	$\varnothing 22$	$44 \times 67 \times 30$	0.135

* Only applies to TI-30: For the correct operation of the transformer, it is required to pass the current wire through the transformer opening 4 times.

TI-100/... / TI-600
 1-phase closed-core transformers

norm No.	IEC $60044-1$
nominal secondary current Is	5 A
rated voltage	0.66 kV AC
insulation breakdown voltage	$3 \mathrm{kV} / 1 \mathrm{~min}$
frequency	$50 / 60 \mathrm{~Hz}$
security factor	$\mathrm{FS}<5$
working temperature	$-5 \div 40^{\circ} \mathrm{C}$
S1/S2 terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
installation	board/busbar
orientation	vertical/horizontal
ingress protection	IP20

Type	Transformer Ip/ls	Class	Power [VA]	P1/P2 hole dimensions A1/A2/A3 \times B; C $[\mathrm{mm}]$	Dimensions [mm]	Weight [kg]
TI-100	$100 / 5$	0.5	2.5	$30 / 25 / 20 \times 10 ; \varnothing 22$	$61 \times 80 \times 37$	0.235
TI-150	$150 / 5$	0.5	2.5	$30 / 25 / 20 \times 10 ; \varnothing 22$	$61 \times 80 \times 37$	0.235
TI-200	$200 / 5$	0.5	5.0	$30 / 25 / 20 \times 10 ; \varnothing 22$	$61 \times 80 \times 37$	0.235
TI-250	$250 / 5$	0.5	5.0	$30 / 25 / 20 \times 10 ; \varnothing 22$	$61 \times 80 \times 37$	0.235
TI-300	$300 / 5$	0.5	5.0	$30 / 25 / 20 \times 10 ; \varnothing 22$	$61 \times 80 \times 37$	0.235
TI-400	$400 / 5$	0.5	5.0	$40 / 30 / 00 \times 10 ; \varnothing 30$	$75 \times 99 \times 41$	0.305
TI-600	$600 / 5$	0.5	5.0	$40 / 30 / 00 \times 10 ; \varnothing 30$	$75 \times 99 \times 41$	0.305

P1/P2 hole TI-400; TI-600

norm No.	IEC $60044-1$
nominal secondary current Is	5 A
rated voltage	0.66 kV AC
insulation breakdown voltage	$3 \mathrm{kV} / 1 \mathrm{~min}$
frequency	$50 / 60 \mathrm{~Hz}$
security factor	$\mathrm{FS}<5$
working temperature	$-15 \div 50^{\circ} \mathrm{C}$
S1/S2 terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.5 Nm
installation	board
orientation	vertical/horizontal
ingress protection	IP20

Type	$\mathrm{lp} / \mathrm{ls}$ transformer	Class	Power [VA]	Dimensions [mm]									Weight [kg]
				A	B	c	D	E	F	G	H	1	
TO-100	100/5	1.0	1.5	21	32	51	90	112	34	45	40	32	0.78
TO-150	150/5	1.0	1.5	21	32	51	90	112	34	45	40	32	0.78
TO-200	200/5	0.5	1.5	21	32	51	90	112	34	45	40	32	0.78
TO-250	250/5	0.5	1.5	21	32	51	90	112	34	45	40	32	0.78
TO-300	300/5	0.5	1.5	21	32	51	90	112	34	45	40	32	0.78
TO-400	400/5	0.5	1.5	50	80	78	116	146	33	33	35	33	0.90
TO-600	600/5	0.5	2.5	50	80	78	116	146	33	33	35	33	0.90
TO-750	750/5	0.5	5.0	50	80	78	116	146	33	33	35	33	0.90
TO-1000	1000/5	0.5	5.0	50	80	78	116	146	33	33	35	33	0.90

It is recommended to connect the secondary system with a wire with a diameter of at least $2.5 \mathrm{~mm}^{2}$.
(!)
Grounding of the S2 terminal is recommended. Do not turn off the secondary system while the transformer is running (high voltage may cause injury to people or damage to the device).

norm No.	IEC $60044-1$
nominal secondary current Is	5 A
rated voltage	0.66 kV AC
insulation breakdown voltage	$2 \mathrm{kV} / 1 \mathrm{~min}$.
frequency	$50 / 60 \mathrm{~Hz}$
security factor	$\mathrm{FS} \leq 2$
working temperature	$-15 \div 45^{\circ} \mathrm{C}$
S1/S2 terminal	cable
tightening torque	not applicable
mounting	rail/cable
orientation	vertical/horizontal
ingress protection	IP2O

Type	$\mathrm{Ip} / \mathrm{ls}$ transformer	Class	Power [VA]	Dimensions [mm]					
				w	H	D	A	B	C
TOM-100	100/5	1	1.5	45	67	35	23	24	¢22
TOM-150	150/5	1	1.5	45	67	35	23	24	¢22
TOM-200	200/5	1	1.5	45	67	35	23	24	¢22
TOM-250	250/5	1	1.5	45	67	35	23	24	¢22
TOM-300	300/5	1	1.5	45	67	35	23	24	¢22
TOM-400	400/5	1	1.5	58	86	43	34	36	ø32
TOM-500	500/5	1	1.5	58	86	43	34	36	¢32
TOM-600	600/5	1	1.5	58	86	43	34	36	ø32

It is recommended to connect the secondary system with a wire with a diameter of at least $2.5 \mathrm{~mm}^{2}$.
(!) Grounding of the $S 2$ terminal is recommended. Do not turn off the secondary system while the transformer is running (high voltage may cause injury to people or damage to the device).

3-phase

Purpose

The 3-phase (3 in 1) current transformer is used for indirect measurements of 3-phase currents. Its design allows it to be mounted directly on the outputs of the cut-off switches (ABB Isomax series, Merlin Gerlin NS series and similar) saving assembly time and space in the switchgear.

TP-100 / ... / TP-600 3-phase closed-core transformers

norm No.	IEC $60044-1$
nominal secondary current Is	5 A
rated voltage	720 VAC
insulation breakdown voltage	$3 \mathrm{kV} / 1 \mathrm{~min}$.
frequency	$50 / 60 \mathrm{~Hz}$
security factor	$\mathrm{FS}<5$
thermal short-circuit current (Ith)	$60 \times \mathrm{ln}$
dynamic short-circuit-current (Idyn)	2.55×1 lh
working temperature	$-5 \div 40^{\circ} \mathrm{C}$
S1/S2 terminal	$4.0 \mathrm{~mm}^{2}$ screw terminals
mounting	DIN rail/board/cable
orientation	vertical/horizontal
ingress protection	

Type	$\mathrm{lp} / \mathrm{ls}$ transformer	Class	Power [VA]	P1/P2 hole dimensions $\mathrm{W} \times \mathrm{H}$ [mm]	Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ [mm]	Weight [kg]
TP-100	100/5	1	1.5	15×21	$105 \times 80 \times 51$	0.452
TP-150	150/5	1	2.5	15×21	$105 \times 80 \times 51$	0.452
TP-200	200/5	1	2.5	15×21	$105 \times 80 \times 51$	0.452
TP-250	250/5	1	2.5	15×21	$105 \times 80 \times 51$	0.452
TP-300	300/5	1	2.5	31×31	$142 \times 96 \times 51$	0.570
TP-400	400/5	1	2.5	31×31	$142 \times 96 \times 51$	0.570
TP-600	600/5	1	2.5	31×31	$142 \times 96 \times 51$	0.570

Current shunts

Purpose

The measuring shunts is designed to extend the measuring range of current meters.

B0-100A-75mV

Functioning

The voltage drop between the terminals of the measuring shunt is proportional to the current flowing. For the rated current of the shunt, the voltage drop is 75 mV . The shunts can be used in conjunction with dedicated energy meters (e.g. LE-01D), or other current meters (electronic or magneto-electric).

rated current	100 A
output voltage	75 mV
measurement accuracy	0.5
current overload capacity	
continuous	120\% In
short term (5 s)	500\% In
test voltage	5 kV
terminals	
current	$2 \times \mathrm{M} 6$ screw $\times 15$
voltage	$2 \times$ M 4 screw $\times 8$
dimensions	$50 \times 32 \times 42 \mathrm{~mm}$
mounting	board, $2 \times$ screw 5 mm
ingress protection	IP20

B0-200A-75mV

Functioning

The voltage drop between the terminals of the measuring shunt is proportional to the current flowing. For the rated current of the shunt, the voltage drop is 75 mV . The shunts can be used in conjunction with dedicated energy meters (e.g. LE-01D), or other current meters (electronic or magneto-electric).

rated current	200 A
output voltage	75 mV
measurement accuracy	0.5
current overload capacity	
continuous	$120 \% \mathrm{In}$
short term (5 s)	$500 \% \mathrm{In}$
test voltage	5 kV
terminals	
\quad current	$2 \times \mathrm{M} 10 \mathrm{screw} \times 15$
voltage	$2 \times \mathrm{M} 5 \mathrm{screw} \times 8$
dimensions	$82 \times 44 \times 43 \mathrm{~mm}$
mounting	board, $2 \times$ screw 5 mm
ingress protection	IP20

Section XIII Indexes

Chapter 49

Product index314

Chapter 50

Housing types and dimensions.. 317

Product index

A
AC-1I... 292
AKS-08 ... 284
AS-212 ... 14
AS-214 .. 14
AS-220T .. 15
AS-221T ... 16
AS-222T .. 16
AS-223 .. 15
AS-224 .. 15
AS-225 .. 17
AS-225D... 18
AS-B 220 ... 14
AS-B 110 ... 14
AS-B 42 ... 14
AS-B 24 ... 14
ASO-201... 14
ASO-204... 14
ASO-202... 15
ASO-203.. 15
ASO-205... 14
ASO-220... 13
ASO-110... 13
ASO-42... 13
ASO-24.. 13
ASP .. 270
AT-1I... 288
AT-1U .. 288
AT-1I-DS ... 287
AT-1U-DS... 287
AT-1I-KT.. 287
AT-1U-KT .. 287
AT-1I-PT... 288
AT-1U-PT... 288
AT-2I.. 289
AT-2U .. 289
AT-3I... 289
AV-1I ... 292
AWZ-30... 10
AWZ.. 10
AZ-112 .. 11
AZ-112 PLUS ... 11
AZ-112-LED .. 11
AZ-B .. 10
AZ-B UNI ... 10
AZ-B PLUS .. 10
AZ-B PLUS UNI ... 10
AZH-106.. 9
AZH ... 9
AZH-C... 9
AZH-LED... 9
AZH-MINI-LED.. 8
AZH-S.. 10
AZH-S PLUS ... 10

B

BIS-402 .. 31
BIS-403 .. 33
BIS-404 ... 35
BIS-408 .. 31
BIS-408-LED ... 31
BIS-409 ... 36
BIS-410 .. 33
BIS-410-LED 33

BIS-411 .. 32
BIS-411-LED .. 32
BIS-411B ... 32
BIS-411BM.. 32
BIS-411B-LED... 32
BIS-411BM-LED.. 32
BIS-411M ... 32
BIS-411M-LED.. 32
BIS-412 .. 34
BIS-412-LED ... 34
BIS-412M ... 34
BIS-412M-LED.. 34
BIS-412P ... 34
BIS-413 ... 33
BIS-413-LED ... 33
BIS-414 .. 35
BIS-414-LED ... 35
BIS-416 ... 32
BIS-419 .. 36
BIS-419-LED ... 36
BO-100A-75mV...................................... 312
BO-200A-75mV....................................... 312
BZ-1 ... 193
BZ-2 ... 193
BZ-3 ... 193
BZ-4 .. 194

C

CKF-316 ... 162
CKF-316 TRMS 162
CKF-317 ... 163
CKF-317 TRMS 163
CKF-318 TRMS .. 164
CKF-319 TRMS 164
CKF-320 TRMS 161
CKF-337 .. 164
CKF-B ... 162
CKF-B TRMS .. 162
CKF-BR... 163
CKF-BR TRMS... 163
CKF-BT ... 163
CKF-BT TRMS .. 163
CKF ... 162
CKF TRMS ... 162
CLG-03... 264
CLG-04.. 264
CLG-13T ... 263
CLG-14T .. 263
CLG-15T ... 263
CLI-01... 261
CLI-02... 262
CLI-11T.. 261
CP-500 ... 167
CP-709 ... 165
CP-710 .. 166
CP-721-FPV .. 166
CP-721 .. 166
CP-730 .. 167
CP-733 ... 167
CR-810 DUO... 278
CRT-04 .. 274
CRT-05 ... 275
CRT-06 ... 275
CRT-15T.. 277
CZF ... 156

CZF TRMS... 156
CZF2-B .. 160
CZF2-BR .. 160
CZF2... 160
CZF-310... 156
CZF-310 TRMS 156
CZF-311... 157
CZF-311 TRMS .. 157
CZF-312... 157
CZF-312 TRMS .. 157
CZF-331... 158
CZF-331 TRMS 158
CZF-332... 159
CZF-333.. 158
CZF-334 TRMS 158
CZF-B .. 156
CZF-B TRMS ... 156
CZF-BR ... 157
CZF-BR TRMS .. 157
CZF-BS... 156
CZF-BS TRMS .. 156
CZF-BT.. 157
CZF-BT TRMS ... 157

D

DMA-1 .. 206
DMA-1 True RMS................................... 206
DMA-1T ... 207
DMA-3 .. 206
DMA-3 True RMS.................................... 206
DMA-3T .. 207
DMM-1T .. 207
DMM-4T .. 208
DMM-5T-2 .. 209
DMM-5T-3 ... 208
DMV-1AC-MBT 205
DMV-1DC-MBT 205
DMV-1 .. 204
DMV-1 True RMS 204
DMV-1T.. 204
DMV-3 ... 204
DMV-3 True RMS 204
DMV-3T... 204
DR-03.. 41
DR-04W / DR-04B..................................... 41
DR-05W / DR-05B..................................... 42
DR-06W / DR-06B..................................... 42
DR-07.. 42
DR-08... 43
DR-09 / DR-09B ... 43
DR-09-IP65 ... 43
DR-30M .. 44
DRL-12 .. 46
DRM-01 .. 45
DRM-02 ... 45
DRM-04 .. 47
DRM-05 .. 47
DRM-06 .. 47
DRM-07 .. 45
DRM-08 .. 46
DSW-1... 112

ECH-06..	.202, 286
EPM-621	.. 191
EPP-618	189
EPP-619	190
EPP-620 190
EPS-D. 192
EZ-02 111
EZ-03.	. 111
EZ-04 111
EZ-05..	. 11

F

FA-1F... 226
FA-1LS / FA-3HS 214
FA-1LX/FA-3HX 218
FA-3X ... 222
F\&Home .. 65
F\&Home RADIO 68
FLC12-8DI-4R .. 144
FLC18-12DI-6R....................................... 143
FLC18E-2AQ-VI 147
FLC18E-3PT100....................................... 147
FLC18E-4AI-I ... 147
FLC18E-8DI-8R 146
FLC18E-8DI-8TN..................................... 146
FLC18E-RS485.. 148
FLC18-ETH-12DI-6R 142
FLC-USB (programator)........................... 145
FOX Single Switch 61
FOX Switch \& Energy 61
FOX Double Switch 62
FOX Shutter.. 62
FOX Gate... 63
FOX Dimmer .. 63
FOX Double LED.. 64
FOX Color LED... 64
FPV3 series (Photovoltaic inverters)........ 213
FW-BYPASS-NN .. 79
FW-D1P... 81
FW-D1D .. 81
FW-FS1... 87
FW-GS1... 82
FW-GS2 .. 83
FW-GS4 ... 83
FW-KEY ... 85
FW-LED2P .. 81
FW-LED2D.. 82
FW-R1D... 77
FW-R1D-P .. 77
FW-R1P .. 77
FW-R1P-NN... 79
FW-R1P-P.. 77
FW-R2D... 78
FW-R2D-P ... 78
FW-R2P .. 78
FW-R2P-NN.. 79
FW-R2P-P.. 78
FW-STR1D.. 80
FW-STR1D-P... 80
FW-STR1P .. 80
FW-STR1P-P ... 80
FW-RC4... 84
FW-RC4G ... 84
FW-RC4-AC .. 84
FW-RC5 ... 85
FW-RC10.. 85
FW-RC10G .. 85
FW-WSO1 ... 86
FW-WSO2 .. 86
FW-WSO4 ... 86

FW-WS1.. 86 M
FW-WS2... 86
FW-WS3... 86

G

GS1-AC-R ... 23
GS1-DC .. 23
GS2-AC-R .. 24
GS2-STR-3..25, 56
GS4-AC-T ... 24

H

H04 Config ...99, 151
I
INGA .. 20
K
KB-01 .. 111
KB-02 .. 111
KB-03 ... 111
KB-04 ... 111
KK-01 .. 108
KK-01S ... 108
KK-01FP ... 108
KK-02 .. 108
KK-03 .. 108
KK-04 .. 109
KK-04G.. 109
KK-05 .. 109
KK-05K ... 109
KK-08 .. 109
KK-08K ... 110
KK-09 .. 110
KK-01-20DA .. 110
KS-01 ... 110

L

LE-01... 235
LE-01d... 235
LE-01DC .. 251
LE-01M .. 240
LE-01MB .. 248
LE-01MQ.. 246
LE-01MR .. 242
LE-01MW ... 243
LE-02d... 236
LE-02d CT... 238
LE-03... 236
LE-03d... 237
LE-03d CT200.. 238
LE-03d CT400... 238
LE-03M ... 241
LE-03M CT ... 241
LE-03MB ... 248
LE-03MB CT ... 249
LE-03MP .. 242
LE-03MQ.. 246
LE-03MQ CT.. 247
LE-03MW... 244
LE-03MW CT ... 245
LE-04d... 239
LE-05d... 239
LED-AMP-1D ... 50
LED-AMP-1P ... 50
LINA ... 20
LK-712... 212
LK-713... 212
LK-714.. 212
LK-BZ-3G/LK-BZ-3 K................................. 211
LT-04 ... 283

MAYA	
MAX H04	98, 149
MAX-CN-ETH-485	256, 28
MAX-CN-GPRS-485	..256, 285
MAX-CN-USB-485	256,

MB-1I-1... 295
MB-1U-1 .. 295
MB-3I-1... 295
MB-3U-1 .. 295
MB-AHT-1 .. 300
MB-DS-2 ... 297
MB-DS-10 .. 297
MB-DS-30 .. 297
MB-GPS-1 ... 300
MB-LG-4 .. 299
MB-LI-4..262, 299
MB-LS-1 .. 300
MB-PT-100... 298
MB-TC-1.. 298
MeternetPRO .. 252
МК-03/МК-03W 106
MK-04B / MK-04W 106
MK-06B.. 105
MK-06WF... 105
MK-08B... 104
MK-08F .. 105
MK-10EXH ... 103
MK-1OFSDH ... 104
MK-10K... 104
MK-11B / MK-11W 103
MK-12B / MK-12W 103
MPG-03 ... 282
MR-AI-1 ... 303
MR-AO-1.. 303
MR-DI-4 ... 301
MR-DIO-1.. 301
MR-LED-T... 304
MR-RO-1.. 302
MR-RO-4.. 302
MST-01... 48
MST-02.. 48
MST-03.. 48
MT-CPU-1 ... 253

0

OM-1 .. 182

OM-2 ... 182
OM-611 .. 183
OM-616 ... 184
OM-623 ... 182
OM-630 ... 184
OM-631 .. 183
OM-632 ... 183
OM-633 .. 185
OMS-635 ... 185
OP-230.. 286

P
PA-011 .. 293
PA-01U... 293
PA-02-MBT.. 294
PCA-512 / PCA-514................................. 119
PCG-417 DUO.. 130
PCR-513 / PCR-513-16/PCR-515.............. 119
PCS-506 ... 123
PCS-516/PCS-516 AC/ PCS-516 DC.......... 124
PCS-517 ... 126
PCS-519 .. 124
PCS533 Configurator 127
PCS-533 UNI .. 127

PCS-534 ... 131	PZ-828... 265	SZR-279 ... 175
PCU-504 UNI...................................... 121	PZ-829.. 266	SZR-280 ... 176
PCU-507... 122	PZ-831 RC... 268	
PCU-510 DUO 120	PZ-832 RC... 267	T
PCU-511... 120		TI-30/... TI-80 $308^{\text {a }}$
PCU-518.. 121	R	TI-100/... / TI-600 308
PCU-520... 122	RM-07 282	TO-100/... / TO-1000 309
PCU-530.. 120	RM-07... 88	TOM-100/... / TOM-600 310
PCZ-521.3 .. 133	RS-407B ... 88	TP-100 /.../ TP-600.............................. 311
PCZ-521.3 PLUS 132	RS-N...	TR-08 ... 202
PCZ-522.3 .. 133	RS-N... 89	TR-12 .. 202
PCZ-523.2 .. 133	RT-820.. 272	TR-24 ... 202
PCZ-524.3 ... 135	RT-820... 272	TR-24 ... 202
PCZ-525.3 .. 136	RT-821... 272	V
PCZ-525.3 PLUS 136	RT-822.. 272	
PCZ-526.3 .. 137	RT-823... 272	VIKA.. 21
PCZ-528.3 .. 137	RT-824	
PCZ-529.3 .. 134	RT-825... $27 . . .$.	W
PCZ-531A10 .. 49	RT-826.. 272	WB-1G/WB-1Y/WB-1R 286
PCZ-531LED .. 49	RT-833... 277	WB-2.. 286
Pendrive64 253		WN-711 .. 211
PF-421 TRMS 169	S	WN-723 ... 211
PF-431 .. 169	SEP-01.. 280	WNC-1 .. 210
PF-431-LED .. 169	SEP-02... 280	WNC-3.. 210
PF-432 TRMS 170	SEP-03 USB 280	WZE-1.. 237
PF-433 TRMS 170	SCO-801.. 37	WZE-3 ... 237
PF-434 TRMS 170	SCO-802... 38	
PF-435 TRMS 170	SCO-802-LED.. 38	Z
PF-441 .. 171	SCO-803... 39	ZI-1 ... 197
PF-451 ... 171	SCO-811.. 37	ZI-2 ... 197
PF-452 ... 172	SCO-812.. 38	ZI-3 .. 197
PIN-12-24 .. 201	SCO-813.. 37	Z1-4 .. 197
PIN-60-24 .. 201	SCO-814... 38	ZI-5 ... 197
PIN-100-48 201	SCO-815... 39	Z1-6 ... 197
PIN-300-48 201	SCO-816... 40	ZI-10-12P 200
PK-1P ... 306	SCO-816A .. 40	ZI-11 ... 200
PK-1Z-LED .. 306	SCO-816D ... 40	Z1-12 .. 200
PK-2P .. 306	SCO-816M ... 40	ZI-13 ... 200
PK-2Z-LED .. 306	SF-110SF-550.................................. 230	Z1-14 .. 200
PK-3P ... 306	SIMply MAX P01.................................. 93	ZI-15 .. 197
PK-4PR ... 306	SIMply MAX P04.................................. 94	ZI-16 .. 197
PK-4PZ ... 306	SIMply MAX P02 95	Z1-17 ... 197
PLD-01 350 202	SIMply MAX P03 96	ZI-20 .. 197
PLD-01 750 .. 202	SIMply MAX P05 97	ZI-20-12P .. 200
PO-405... 128	SLA-KK-04-SKM.................................. 113	ZI-21 ... 197
PO-406.. 128	SLA-KK-04-SKP 114	Z1-22 .. 197
PO-415... 128	SLA-KK-05-SKM................................. 114	ZI-24 .. 197
PP-1P ... 307	SLA-KK-05-SKP 114	Z1-60-24 .. 199
PP-1Z-LED .. 307	SLC-1201A-SKM 115	Z1-61-12 .. 198
PP-2Z .. 307	SLC-1201A-SKP 115	Z1-61-24 .. 198
PP-2Z-LED ... 307	SLC-1401D-SKM................................. 115	ZI-75-12 ... 199
PR-602 ... 186	SSD240 ... 253	ZI-100-12 ... 198
PR-603 ... 187	SSD280 ... 253	Z1-100-24 ... 198
PR-612 .. 186	SSR-5A-D.. 307	ZI-120-12 ... 199
PR-613 .. 187	ST25/ST25-...-M 305	Z1-120-24 .. 199
PR-614 ... 188	ST40/ST40-...-M 305	ZI-240-12 .. 199
PR-615 ... 187	ST63/ST63-...-M 305	ZI-240-24 .. 199
Probe ø10 ... 11	ST100.. 305	ZI-USB-5... 200
Probe PLUS ... 11	STP-541.. 129	ZS-1.. 197
Probe PZ .. 269	STR-3P ... 55	ZS-2... 197
Probe PZ2 ... 269	STR-4P .. 55	ZS-3... 197
PROXI Plug ... 91	STR-3D .. 55	ZS-4... 197
PROXI Power....................................... 91	STR-4D ... 55	ZS-5... 197
PROXI Light ... 91	STR-W ... 56	ZS-6.. 197
PROXI Shade ... 92	STR-R .. 57	
PROXI Gate ... 92	STR-1 .. 58	
PROXI Bulb.. 92	STR-21 .. 58	
PSA-263 ... 178	STR-421 .. 58	
PSA-463 ... 179	STR-2 ... 59	
PSI-02D .. 281	STR-22 ... 59	
PSI-02 ... 281	STR-422 .. 59	
PSI-02P .. 281	SZR-277 .. 173	
	SZR-278 ... 174	

Housing types and dimensions

Dimensions given in millimetres.
Tolerance $\pm 0.5 \mathrm{~mm}$.

\qquad

87,5
000000000000000
0000000000

module 5S
module 6 S

surface-mounted for: AZH-C

surface-mounted for: AWZ, AWZ-30

flush-mounted PDT

flush-mounted PDTN

LE-01MR

LE-02d/LE-02d CT

LE-03/LE-03d/LE-03d CT200/
LE-03d CT400/LE-03M/LE-03M CT

LE-03MP

LE-01MB/LE-01MQ

LE-03MB/LE-03MQ

																								\dagger
320																							H2BE	3 Notes

[^0]: (!) Only AS-223 can work with backlit buttons.

[^1]: BIS-409 can work with backlit buttons.

[^2]: Only the 230 V relays can work with the backlit buttons.

[^3]: * Ability to operate above the rated load depends on the temperature and operating conditions

[^4]: * The load capacity can be increased using additional amplifiers LED-AMP-1P or LED-AMP-1D (see p. 50)

[^5]: System features

 - Server-based architecture allowing to achieve unprecedented functionality using a relatively narrow range of universal actuator and sensory elements;
 - Integration of independently operating devices and installations;
 - Flexible system expansion and scaling;
 - The compact size of modules for easier and faster installation adapted to work with accessories from other manufacturers;
 - Use of a wide range of mobile devices (phones, smartphones, and tablets) as universal remote controls, or stationary or portable control panels;
 - Integration of various systems using radio communication with wired solutions (applies only to selected solutions);
 - Limiting the number of installation elements by parallel use of their functionality (which reduces installation costs);
 - Built-in algorithms to extend the life of system components (such as preheating for incandescent lighting);
 - Use of information from Internet services to manage physical components of the system (for example, managing the operation of high inertia heating systems or plant watering systems based on weather forecasting);
 - Built-in astronomical clock, which in combination with weather prediction tools allows, among other things, to fully abandon the use of twilight sensors, thus reducing installation costs;
 - Unique tools for designing and configuring the installation.

[^6]: (! Pressing the transmitter button changes the contact position to the opposite one (switch on/off). Operating diagram on next page.

[^7]: (! Connection instructions for the door controls can be downloaded from the following page www.fif.com.pl from the product subpage.

[^8]: ${ }^{1}$ The MK-10 series does not work with other monitors
 ${ }^{2}$ Monitors read the AHD signal

[^9]: Application

 - Installation for entrance doors;
 - Compatible with all monitor power supplies.

[^10]: (!)
 PCZ-521.3 PLUS cannot work with backlit buttons.

[^11]: * Remote programming requires an Android phone with built-in NFC communication support and the free PCZ Configurator app installed (downloadable from the Google Play shop). The NFC communication range is limited to a few centimetres, therefore a direct connection of the phone to the clock is required to transfer the configuration from the app to the clock.
 ** In the event of a power failure, the internal battery only maintains the internal clock so that the current time and date are not lost. In the event of a power failure, all external clock functions, such as the display and relay, remain disabled.

[^12]: * Battery life depends on the operating conditions and how long the clock is powered from the battery only. Low ambient temperatures severely limit battery life

[^13]: * Actual permissible load depends on the nature of the receivers. The use of the PF-441 switch with additional contactors is essential for the power supply of large household appliances, heating devices, lighting (LEDs, meta-halogens, ESL bulbs).

[^14]: Protection

 - Short circuit - in case of overload or short circuit, the output voltage is automatically disconnected. The power supply unit cyclically tries to switch on the power supply and when the cause of the tripping of the protection disappears, the rated power supply voltage is restored.
 - Overvoltage - a disconnection of the output voltage. Return to normal operation after the power supply is switched off and back on.
 - Thermal - a disconnection of the output voltage. When the temperature drops to a safe value, the output voltage will be restored.

[^15]: (!)
 The parameters of the dedicated RT or RT2 probe can be found in the table on page 274.

